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The ultrafilter number and hm

Osvaldo Guzmán
Abstract. The cardinal invariant hm is defined as the minimum size of a family of cmin-
monochromatic sets that cover 2ω (where cmin(x , y) is the parity of the biggest initial segment both
x and y have in common). We prove that hm = ω1 holds in Shelah’s model of i < u, so the inequality
hm < u is consistent with the axioms of ZFC. This answers a question of Thilo Weinert. We prove
that the diamond principle◇d also holds in that model.

1 Introduction

In [9], Geschke et al. defined the coloring cmin ∶ [2ω]2 �→ 2 given by cmin(x , y) = 0 if
△(x , y) is even and cmin(x , y) = 1 in case△(x , y) is odd (where△(x , y) is the length
of the largest initial segment that x and y have in common). They defined the cardinal
invariant hm as the smallest size of a family of cmin-monochromatic sets that covers 2ω .
Since every cmin-monochromatic set is nowhere dense, it follows that cov(M) ≤ hm

(by cov(M), we denote the smallest family of meager sets that are needed to cover
2ω). However, the cardinal invariant hm may be much larger than cov(M) ∶
Proposition 1 [7, 9] cof(N), c− ≤ hm (where c− = c if c is a limit cardinal and if c = κ+

then c− = κ).

Above, cof(N) denotes the cofinality of the ideal of Lebesgue-null subsets of 2ω .
Therefore, hm is bigger than all the cardinal invariants that appear in the Cichoń
diagram (see [2, 3]). On the other hand, it is known that the inequality hm < c is
consistent; in fact, it holds in the Sacks model [9] and in the Miller lite model [7].
It is interesting to compare it with the other cardinal invariants of the continuum. The
following is an interesting open problem of Thilo Weinert:

Problem 2 (Weinert) Is the inequality hm < r consistent?

Where rdenotes the smallest size of a reaping family, i.e., the smallest size of a family
R ⊆ [ω]ω such that for every A ∈ [ω]ω , there is R ∈ R such that either R ⊆∗ A or R ⊆∗
ω/A. This problem is still open. Weinert made some interesting advances with respect
to the question in his thesis (and it was after reading the first chapters of his thesis that
the author became interested on the topic). In his thesis, he asked the following:

Problem 3 (Weinert) Is the inequality hm < u consistent?

Received by the editors September 3, 2018; revised May 4, 2021; accepted October 4, 2021.
Published online on Cambridge Core November 3, 2021.
The author was partially supported by a CONACyT grant A1-S-16164 and PAPIIT grant IN104220.
AMS subject classification: 03E17, 03E35, 03E05.
Keywords: Cardinal invariants of the continuum, continous colorings, ultrafilters, ultrafilter

number, iterated forcing, MAD families.

https://doi.org/10.4153/S0008414X21000614 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X21000614
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X21000614&domain=pdf
https://doi.org/10.4153/S0008414X21000614


The ultrafilter number and hm 495

Where u denotes the ultrafilter number, the smallest size of a base of an ultrafilter1

in ω. In this note, we will provide a positive answer to the question. Since r ≤ u our
solution to may be viewed as a partial solution to the first problem.

In [13], Shelah built a model of i < u and we will prove that hm < u holds in that
model too. A variant of the forcing of Shelah was recently used in [5] by Chodounský
et al. in order to show that the inequality f < u is consistent (f is the free sequence
number introduced by Monk, the reader may consult the interesting paper [5] for the
definition of f and will not be used in here).

Recall that an infinite family A ⊆[ω]ω is an almost disjoint family (AD) if the
intersection of any two of its elements is finite and A is MAD if it is maximal with this
property. The almost disjointness number a is defined as the smallest size of a MAD
family. In the last part of the paper, we will prove that a = ω1 holds in the model of
Shelah. In order to prove that there is small MAD family in such model, we prove
that Hrušák diamonds◇d holds in there. This is enough since Hrušák proved that◇d

implies that a = ω1 .
We would like to point out that the following problem of Weinert is still open:

Problem 4 (Weinert) Is the inequality hm < a consistent?

This problem seems very hard since the only known method to construct models
of cof(N)< a is with the aid of templates (see [4, 15]) but this method does not seem
to help with the question.

In a recent work with Cruz-Chapital et al., we obtained a different prove that a = ω1
holds in the model of Shelah mentioned above. In [12], it is proved that the Shelah
forcing strongly preserves the tightness of MAD families, which is a property that
guarantees us that certain type of MAD families are preserved (even in the iteration).
The proof from [12] and the one from this paper are complementary. On the one hand,
the argument of [12] is much simpler and it proves that there are tight MAD families
on the Shelah model. On the other hand, we get that ◇d holds in that model.

We would like to mention that although the cardinal invariant hm is not very well
known, it is very interesting. We would like to mention some of the motivations for
studying this invariant. Given a polish space X and a continuous coloring c ∶ [X]2 �→
2, define hm(c) as the smallest size of a family of c-monochromatic sets that cover
X . Note that hm = hm(cmin). It turns out that hm and cmin are critical in the study
of continuous colorings, if c ∶ [X]2 �→ 2 is a continuous coloring such that hm(c)
is uncountable, then hm ≤ hm(c)2. Furthermore, the study of the cardinal invariants
for continuous colorings has important implications in the study of the structure of
nonconvex closed subsets of the Euclidean plane. This and more very interesting and
deep results can be consulted in [7–9].

Our notation is mostly standard, with one important exemption. A tree T ⊆ X<ω

is a set closed under taking subsequences and the set of branches of T (denoted by
[T]) is the set { f ∈ Xω ∣ ∀n ∈ ω ( f ↾ n ∈ T)} . If s, t ∈ X<ω , by s⌢t, we denote the
concatenation of s and t, if x ∈ X , we will often write s⌢x instead of s⌢⟨x⟩. Given a
tree T ⊆ X<ω and s ∈ T , define sucT(s) = {x ∈ X ∣ s⌢x ∈ T}. Given n ∈ ω, the n-level

1For us, all ultrafilters are nonprincipal.
2There is also a continuous coloring cmax ∶ [2ω]2 �→ 2 such that hm(c) ≤ hm(cmax).
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of T is defined as Tn = {s ∈ T ∣ ∣s∣ = n + 1}3 and let T≤n = ⋃
i≤n

Ti as well as T<n = ⋃
i<n

Ti .

Note that if s = ⟨x0 , . . . , xn⟩ ∈ T , then s ∈ Tn .

2 Shelah’s forcing with respect to an ultrafilter

Given a partial order P and an ultrafilter U, we say that P ultradestroys U if P forces
that U is no longer the base for an ultrafilter. In [13], Shelah designed a forcing
to ultradestroy any given ultrafilter while causing “minimal damage” to the ground
model.

Definition 5 Let U be an ultrafilter. A set E = {En ∣ n ∈ ω} ⊆ ℘(ω) is called an
U-partition if E satisfies the following properties:
1. E is a pairwise disjoint family of elements of U∗ (where U∗ denotes the dual ideal

of U, i.e., U∗ = {ω/A ∣ A ∈ U}).
2. dom(E) = ⋃

n∈ω
En ∈ U.

3. Each En is nonempty.

In other words, E is an U-partition if E is a partition of some element in U such
that all of its classes are in U∗ . Given a ∈ dom(E)we define [a]E as the unique En ∈ E
such that a ∈ En . Define AE = {aE(n) ∣ n ∈ ω}, where aE(n) = min(En) and this set
will be called the leaders of E . We will always assume that if E = {En ∣ n ∈ ω} is an
U-partition and n < m, then aE(n) < aE(m).

Definition 6 Let E and E
′

be twoU-partitions, we say that E′ <par t E if every E′-class
is the union of E-classes.

Equivalently, E′ can be constructed by throwing away entire classes of E and
merging (i.e., taking unions) some classes of E (obviously, making sure that the new
classes are elements of U∗). Note that if E′ <par t E then dom (E′) ⊆ dom(E) and
AE′ ⊆ AE .

Definition 7 Let U be an ultrafilter. The Shelah forcing with respect toU (denoted by
S(U)) is the set of all p = (Ep , Hp , Lovp , Hatp) with the following properties:
1. Ep is a U-partition (let Ap = AEp , ap(n) = aEp(n) and [ap(n)]p = [ap(n)]Ep ).
2. If n ∈ ω then {Lovp(ap(n)), Hatp(ap(n))} is a partition of [ap(n)]p and ap(n) ∈

Lovp(ap(n)).
3. Lovp = {Lovp(ap(n)) ∣ n ∈ ω} and Hatp = {Hatp(ap(n)) ∣ n ∈ ω}.
4. If m ∉ dom(Ep) then Hm

p ∶ 2Ap∩m �→ 2.
5. Hp = {Hm

p ∣ m ∉ dom(Ep)}.
Given p, q ∈ S(U), define p ≤ q if the following holds:

1. Ep <par t Eq (so Ap ⊆ Aq).
2. If a ∈ Ap (so a ∈ Aq and its class was not thrown away) then Lovq(a) ⊆ Lovp(a)

and Hatq(a) ⊆ Hatp(a).

3Tn is often defined as {s ∈ T ∣ ∣s∣ = n}, but for our purposes, it will be better to define it the way we
did.
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3. If a ∈ Aq and there is b ∈ Ap such that b < a and a ∈ [b]p (so the class of a was
merged with a previous class) then we have the following:
(a) If a ∈ Lovp(b) then Lovq(a) ⊆ Lovp(b) and Hatq(a) ⊆ Hatp(b).
(b) If a ∈ Hatp(b) then Lovq(a) ⊆ Hatp(b) and Hatq(a) ⊆ Lovp(b).

4. If a ∈ Aq/dom(Ep) and n ∈ [a]q then Hn
p ∶ 2Ap∩n �→ 2 is defined as follows:

(a) Ha
p may be any function (with domain 2Ap∩n and codomain 2 of course).

(b) If f ∈ 2Ap∩n and n ∈ Lovq(a) then Hn
p( f ) = Ha

p( f ↾ a) and if n ∈ Hatq(a)
then Hn

p( f ) = 1 − Ha
p( f ↾ a).

Let n ∉ dom(Eq) and f ∶ Ap ∩ n �→ 2. Define f ∶ Aq ∩ n �→ 2 as follows:

f (b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (b) if b ∈ Ap
f (a) if b ∉ Ap and there is a ∈ Ap ∩ n

with b ∈ Lovp(a)
1 − f (a) if b ∉ Ap and there is a ∈ Ap ∩ n

with b ∈ Hatp(a)
Hb

p ( f ↾ (Ap ∩ b)) if b ∉ dom (Ep)
(as defined in point 4 above)

5. Hn
p( f ) = Hn

q ( f ) for every n ∉ dom (Eq) .

Point 5 in the definition of p ≤ q might be the hardest to understand. We can see an
example. Assume that 0, 1, 2, 3 ∈ Aq and 4 ∉ dom (Eq) . Let p ≤ q such that 0, 2 ∈ Ap
and 1 ∈ Hatp(0) while 3 ∈ Lovp(2). Let g , h ∈ 2Ap∩4 given by g(0) = 0 and g(2) = 1,
while h(0) = 1 and h(2) = 1. In this case, we have that g = {(0, 0) , (1, 1) , (2, 1) , (3, 1)}
and h = {(0, 1) , (1, 0) , (2, 1) , (3, 1)} .

In general, we need to argue that Hn
p is well-defined (i.e., if f ∶ Ap ∩ n �→ 2, then

f ∶ Aq ∩ n �→ 2, so we are allowed to apply Hn
q to f ). We prove this in the following

lemma:

Lemma 8 LetU be an ultrafilter and p, q ∈ S(U) that satisfy points 1–4 of the definition
of p ≤ q. If n is a natural number such that n ∉ dom (Eq) , then Hn

p is well-defined.

Proof Let n ∈ ω such that n ∈ ω/dom (Eq) and f ∶ Ap ∩ n �→ 2, we need to prove
that f is well-defined. Let b ∈ Aq ∩ n, we need to argue that f (b) is actually defined.
We proceed by cases:

Case 9 b ∈ dom(Ep).

Here, f (b) is defined by one of the first three clauses in the definition of f (if b is a
leader in Ep , then the first clause applies, otherwise, either clause 2 or 3 applies).

Case 10 b ∉ dom(Ep).

Here, we have that f (b) = Hb
p ( f ↾ (Ap ∩ b)) and this is well-defined by point 4 of

the definition of p ≤ q. ∎
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Now, we define the following:

Definition 11 Let G ⊆ S(U) be a generic filter. In V [G], we define the generic real
xgen as the set of all n ∈ ω such that there is p ∈ G for which n ∉ dom(Ep) and Hn

p is
the constant 1 function.

We would like to mention that the term generic real may not be completely justified.
We do not know if the generic filter G can be reconstructed from xgen .4

Recall that if p ∈ S(U) and n ∉ dom(Ep) then the domain of Hn
p is 2Ap∩n . Since we

can always throw away a given class, for every p ∈ S(U) and for every n ∈ ω, there is
q ≤ p such that n ∉ dom (Eq) and Hn

q is a constant function (this is the case if Aq ∩ n
is empty). The following lemma follows from the definitions:

Lemma 12 [13] Let p ∈ S(U), a ∈ Ap and n ∉ dom(Ep).
1. p ⊩ “ (Lovp(a) ⊆ ẋgen) ∨ (Lovp(a) ∩ ẋgen = ∅) .”
2. p ⊩ “ (Hatp(a) ⊆ ẋgen) ∨ (Hatp(a) ∩ ẋgen = ∅) .”
3. There are q0 , q1 ≤ p such that the following holds: q0 ⊩ “Lovp(a) ⊆ ẋgen” and q1 ⊩

“Lovp(a) ∩ ẋgen = ∅.”
4. There are q0 , q1 ≤ p such that the following holds: q0 ⊩ “Hatp(a) ⊆ ẋgen” and q1 ⊩

“Hatp(a) ∩ ẋgen = ∅.”
5. Hn

p is the constant 1 function if and only if p ⊩ “n ∈ ẋgen .”
6. Hn

p is the constant 0 function if and only if p ⊩ “n ∉ ẋgen .”

Now it is possible to conclude the following:

Lemma 13 [13] S(U) ultradestroys U, in fact, both ẋgen and ω/ẋgen are forced to have
infinite intersection with every element of U.

Proof We will prove that ẋgen is forced to intersect every element of U, the proof
for ω/ẋgen is similar. Let B ∈ U, p ∈ S(U) and n ∈ ω. It is enough to prove that there
is q ≤ p such that q ⊩ “B ∩ ẋgen ⊈ n.” Since dom(Ep) ∈ U, there is m > n such that
m ∈ B ∩ dom(Ep). Since m ∈ dom(Ep), we know there is a (unique) a ∈ Ap such that
m ∈ [a]p . Define a condition q with the following properties:
1. q ≤ p.
2. dom (Eq) = dom(Ep)/[a]p .
3. If b ∈ dom(Ep)/[a]p then [b]p = [b]q .
4. If m ∈ Lovp(a) then Ha

q is the constant 1 function, and if m ∈ Hatp(a), then Ha
q is

the constant 0 function.
It is easy to see that q ⊩ “m ∈ B ∩ ẋgen , ” so we are done. ∎
The following definitions will be frequently used:

Definition 14 Let p, q ∈ S(U) and n ∈ ω. We define the following orders on S(U) ∶
1. p ≤n q if p ≤ q and [ap(i)]p = [aq(i)]q for every i ≤ n.
2. p ≤∗n q if p ≤n−1 q and ap(n) = aq(n).5
3. p ≤∗∗n q if p ≤∗n q and dom(Ep) = dom(Eq).

4This remark was pointed to us by one of the referees.
5By p ≤

−1 q, we simply mean p ≤ q.

https://doi.org/10.4153/S0008414X21000614 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000614


The ultrafilter number and hm 499

In other words, p ≤n q, if p extends q and the first n-classes of Eq do not get thrown
away nor they merge with other classes. Meanwhile, p ≤∗n q if p ≤n−1 q and the n-class
of Eq was not thrown away (but it could have been merge with other later classes). In
a similar fashion, p ≤∗∗n q means that p ≤∗n q and no class was thrown away. Note that
p ≤∗0 q means that p extends q and the 0-class was not thrown away. It is easy (but not
automatic) to see that these relations are transitive and symmetric. Note that if n < m
and p ≤m q, then p ≤n q. A similar remark apply for the other relations.

Definition 15 Let q, r, q′ , r′ ∈ S(U) and n ∈ ω. We say ⟨q, r, q′ , r′⟩ is an n-nice
sequence if the following holds:
1. q ⊥ r (i.e., q and r are incompatible).
2. If n < i then [aq(i)]q = [ar(i)]r .
3. q′ ≤∗n q and r′ ≤∗n r.
4. If n + 1 < i then [aq′(i)]q′ = [ar′(i)]r′ .
5. dom (Eq) /dom (Eq′) ⊆ [ar′(n)]r′ anddom (Er) /dom (Er′) ⊆ [aq′(n)]q′ .

The incompatibility of q and r is not required for most arguments. However, most
of time we want to work using nice sequences, they will already be incompatible from
the beginning. Note that ⟨q, r, q, r⟩ is an n-nice sequence if and only if q and r are
incompatible and if n < i then [aq(i)]q = [ar(i)]r .

We will also need the following notions:

Definition 16 Let p ∈ S(U), n ∈ ω and D ⊆ S(U).
1. D is ≤n-dense below p if for every q ≤n p there is r ≤n q such that r ∈ D.
2. D is ≤n-open below p if for every r such that r ≤n p and r ∈ D then q ∈ D whenever

q ≤n r.
3. D is ≤n-open dense below p if it is both ≤n-open and ≤n-dense below p.
4. The same definitions apply for ≤∗n .

In the above definitions, if D is ≤n-dense below 1S(U) (where 1S(U) is the largest
element of S(U)), then we will simply write “D is ≤n-dense.” Similar conventions are
adopted for the other notions. Expressions like “D is ≤∗n-open and ≤∗m-dense below p,”
actually mean “D is ≤∗n-open below p and ≤∗m-dense below p.”

Note that if n < m and D is ≤n-open below p, then D is ≤m-open below p. The
following lemma is the base for several constructions in the paper:

Lemma 17 Let n ∈ ω and q, r be two conditions such that ⟨q, r, q, r⟩ is an n-nice
sequence. Let Dq be an ≤∗n-open dense set below q and Dr be an ≤∗n-open dense set below
r. There are q′ ∈ Dq and r′ ∈ Dr such that ⟨q, r, q′ , r′⟩ is an n-nice sequence.

Proof We first find q1 ≤∗n q such that q1 ∈ Dq . Let S = (dom (Eq) /dom (Eq1)) ∪
([aq1(n)]q1

/ [aq(n)]q) and note it is an element of U∗ . Let r1 be any condition such
that:
1. r1 ≤∗n r.
2. [ar1(n)]r1

= [ar(n)]r ∪ S .
3. dom (Er1) = dom (Er) .
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4. Er1 and Eq1 are equal on ⋃{[aq1(i)]q1 ∣ n < i} (i.e., for every x ∈ ⋃{[aq1(i)]q1 ∣
n < i}, we have that [x]Er1

= [x]Er2
, recall that if n < i then [aq(i)]q = [ar(i)]r).

Now we find r2 ≤∗n r1 (so r2 ≤∗n r) such that r2 ∈ Dr . Let Z =
(dom (r1) /dom (r2)) ∪ ([ar2(n)]r2

/ [ar1(n)]r1
) which is also an element of

U∗ . Let q2 be any condition such that:
1. q2 ≤∗n q1 .
2. [aq2(n)]q2

= [aq1(n)]q1
∪ Z .

3. dom (Eq2) = dom (Eq1) .
4. Eq2 and Er2 are equal on ⋃{[ar2(i)]r2

∣ n + 1 < i} (in the same sense as above).
Since q2 ≤∗n q1 and Dq is ≤∗n-open, it follows that q2 ∈ Dq . It is clear that ⟨q, r, q2 , r2⟩

has the desired properties. ∎
The axiom A structure in a forcing is very useful. Unfortunately, it does not seem

that S(U) has one (however, in [13] it was proved that S(U) is < ω1-proper, so by a
theorem of Tetsuya Ishiu, [11] S(U) is forcing equivalent to a partial order with an
axiom A structure. Unfortunately, we were unable to take advantage of this result).
The purpose of the following definitions and results are to obtain a similar structure
to the one of an axiom A forcing.

Definition 18 We say T = ⟨q i , r i⟩i<ω is a 1-fusion sequence if the following holds:
1. q0 and r0 are incompatible but Eq0 = Er0 .
2. If i < ω then ⟨q i , r i , q i+1 , r i+1⟩ is an i-nice sequence.

We will say T = ⟨q i , r i⟩i≤n+1 is a 1-finite fusion sequence if it satisfy the previous
points for every i < n + 1.

Definition 19 Let ⟨p i⟩i∈ω ⊆ S(U) such that p i+1 ≤∗i p i for every i ∈ ω. We define the
limit of ⟨p i⟩i∈ω as Lim (⟨p i⟩i∈ω) = p = (Ep , Hp , Lovp , Hatp) as follows:
1. dom(Ep) = ⋃

i<ω
[ap i+1(i)]p i+1

.

2. [ap(i)]Ep
= [ap i+1(i)]p i+1

.
3. Lovp (ap(i)) = Lovp i+1 (ap i+1(i)) .
4. Hatp (ap(i)) = Hatp i+1 (ap i+1(i)) .
5. If m ∉ dom(Ep) then Hm

p = Hm
pm

.

Above we are not claiming that the limit is a condition. In fact, p = Lim (⟨p i⟩i∈ω)
may not be in S(U) since it might be the case that dom(Ep) is not an element of U.
Nevertheless, if p is indeed a condition, then p ≤∗i p i for every i ∈ ω. The following
result plays the role of a fusion sequence in an Axiom A forcing:

Lemma 20 If T = ⟨q i , r i⟩i<ω is a 1-fusion sequence in S(U) then there is p that
either is a lower bound of ⟨ q i⟩i<ω or it is a lower bound of ⟨ r i⟩i<ω . In fact, either
Lim (⟨q i⟩i∈ω) ∈ S (U) or Lim (⟨r i⟩i∈ω) ∈ S(U).

Proof Assume q = Lim (⟨q i⟩i∈ω) ∉ S(U), we will that r = Lim (⟨r i⟩i∈ω)
is a condition in S(U). In order to show this, we must first argue that
dom(Eq0) = dom(Eq) ∪ dom(Er). If n ∈ dom(Eq0)/dom(Eq), we then may
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find i ∈ ω such that n ∈ dom (q i) /dom (q i+1). Since ⟨q i , q i+1 , r i , r i+1⟩ is i-nice then
n ∈ [ar i+1(i)]r i+1

∪ [ar i+1 (i + 1)]r i+1
so n ∈ dom (Er) . Since dom (Eq0) ∈ U and U is

an ultrafilter, it must be the case that dom (Er) ∈ U. ∎
In the above case, we would say that Lim (⟨q i⟩i∈ω) (or Lim (⟨r i⟩i∈ω) in case

Lim (⟨q i⟩i∈ω) ∉ S(U)) is a fusion for T . For the case of ≤∗∗the situation is simpler:

Lemma 21 If ⟨p i⟩i∈ω ⊆ S(U) is a sequence such that p i+1 ≤∗∗i p i for every i ∈ ω then
there is q ∈ S(U) such that q ≤∗∗i p i for every i ∈ ω.

Proof We claim that q = Lim (⟨p i⟩i∈ω) is as desired. We only need to prove that q is
really a condition. In order to achieve that, it is enough to prove that dom (Eq) ∈ U.
Since the sequence ⟨p i⟩i∈ωis ≤∗∗i -decreasing, it follows that dom (Eq) = dom (Ep0)
and we are done. ∎

We will need the following definition:

Definition 22 Let p ∈ S(U), n > 0 and h ∶ n �→ 2. We define p[h] as the condition
extending p with the following properties:
1. Dom (Ep[h]) = Dom(Ep)/ ⋃

i<n
[ap(i)]Ep

.

2. If m ∈ Dom (Ep[h]) then [m]p[h] = [m]p .
3. If a ∈ Ap[h] then Lovp[h](a) = Lovp(a) and Hatp[h](a) = Hatp(a).
4. If i < n then Hap(i)

p[h] is the constant function with value h(i).

In other words, p[h] is obtained by throwing out the first n-classes and tell their
leaders to “follow h.”

The following lemma (which we leave to the reader) is very easy, yet it will be often
used in future arguments:

Lemma 23 Let n ∈ ω and p, q ∈ S(U) such that q ≤∗n p. If h ∈ 2n+1 , then q[h] ≤ p[h].
We have the following:

Lemma 24 Let p ∈ S(U) and n > 0. The set {p[h] ∣ h ∈ 2n} is a maximal antichain
below p.

Proof Let h, g ∈ 2n with h ≠ g, we will see that p[h] and p [g] are incompatible. Let
i < n such that h(i) = 0 and g(i) = 1. In this way, we have that p[h] ⊩“i ∉ ẋgen” and
p [g] ⊩“i ∈ ẋgen ,” so this two conditions are incompatible.

We now need to prove that the set {p[h] ∣ h ∈ 2n} is predense below p. Let q ≤ p,
take r ≤ q such that for every i < n, either r ⊩“i ∈ ẋgen” or r ⊩“i ∉ ẋgen .” Define h ∶
n �→ 2 such that h(i) = 1 if and only if r ⊩“i ∈ ẋgen .” It follows that r ≤ p[h]. ∎

We now define the following,

Definition 25 Let D ⊆ S(U) be an open dense set below p and n > 0. We define
D̃ (p, n) = {q ≤∗n p ∣ ∀h ∈ 2n (q[h] ∈ D)} .

We now have the next result,

Lemma 26 If D ⊆ S(U) is an open dense set below p and n > 0, then D̃ (p, n) is ≤∗n-
open dense below p.
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Proof We first show that D̃(p, n) is ≤∗n-dense below p. Let q ≤∗n p and enumerate
2n = {h i ∣ i < k}, we can then recursively find a sequence ⟨q i⟩i<k+1 with the following
properties:
1. q0 = q.
2. ⟨q i⟩i<k+1 is ≤∗n-decreasing.
3. q i+1 [h i] ∈ D.

It is then easy to see that qk+1 ∈ D̃ (p, n) . Finally, D̃ (p, n) is ≤∗n-open, since
whenever r ≤∗n q then r[h] ≤ q[h] for every h ∈ 2n . ∎

With these results, we can finally prove that Shelah’s forcing is proper.
Proposition 27 [13] If U is an ultrafilter, then S(U) is a proper forcing.
Proof We will prove that S(U) is proper. Let M be a countable elementary submodel
of some H (κ) and p ∈ M . Let {Dn ∣ n ∈ ω} enumerate all open dense subsets of S(U)
that belong to M . For every n ∈ ω let D̃n (p, n) = {q ≤∗n p ∣ ∀h ∈ 2n (q[h] ∈ Dn)} . We
know that D̃n (p, n) is ≤∗n-open dense. It is also clear that each D̃n (p, n) is an element
of M . Using Lemma 17, we can construct T = ⟨q i , r i⟩i<ω a 1-fusion sequence with the
following properties:
1. T ⊆ M .
2. q0 , r0 ≤ p.
3. q i+1 ∈ D̃ i (q i , i) and r i+1 ∈ D̃ i (r i , i) for every i ∈ ω.

It is easy to see that if p is a fusion of T , then p will be an (M , S(U))-generic
condition extending p. ∎

Recall that a forcing P has the Sacks property if for every p ∈ P and ḟ such that
p ⊩“ ḟ ∈ ωω ,” there are q ≤ p and a sequence S = ⟨Sn⟩n∈ω ∈ V such that Sn ∈ [ω]2n+1

and q ⊩“ ḟ (n) ∈ Sn” for every n ∈ ω. We will soon prove that S(U) has the Sacks
property.
Definition 28 Let P be a partial order, p ∈ P and ẋ a P-name for an element of ωω .
Define ẋ [p] = ⋃{t ∈ ω<ω ∣ p ⊩ “t ⊆ ẋ”} .

In case ẋ is forced to be a new element of ωω (which is often the case we are
interested in), we will have that ẋ [p] ∈ ω<ω .
Definition 29 Let p ∈ S(U) and ẋ such that p ⊩“ẋ ∈ ωω .” We say p is ẋ-nice if p[h]
determines ẋ ↾ n for every h ∶ n �→ 2.

We now have the following:
Lemma 30 [13] Let ḟ be a S(U)-name for a new element of ωω .The set of all ḟ -nice
conditions is a dense set.
Proof Let p ∈ S(U) and n ∈ ω. Define Dn = {q ≤ p ∣ ∃s ∈ ωn+1(q ⊩“ ḟ ↾ (n + 1) =
s”)}. Clearly Dn is an open dense set below p, so by Lemma 26, we get that D̃n (n, p)
is ≤∗n-open dense.

Let q0 , r0 ≤ p be two incompatible conditions with Eq0 = Er0 . Using the previous
remark and Lemma 17, we can construct a 1-fusion sequence T = ⟨q i , r i⟩i∈ω such that
q i+1 , r i+1 ∈ D̃ i (i , p) for every i ∈ ω. By Lemma 20, let p be a fusion of T . It follows
that p ≤ p and p is ḟ -nice. ∎
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With this result, we can conclude the following:

Proposition 31 [13] If U is an ultrafilter, then S(U) has the Sacks property.

Proof Let ḟ be an S(U)-name for a new real and p ∈ S(U). By the previous result,
we can find q ≤ p that is ḟ -nice. For every n ∈ ω, define Sn = {m ∣ ∃h ∈ 2n+1(q[h] ⊩
“ ḟ (n) = m” )}. It follows that Sn has size at most 2n+1 and q ⊩“ ḟ (n) ∈ Sn .” This
finishes the proof. ∎

Most of the arguments in this section were based on the ones of [13]. Instead of our
fusion sequences, Shelah used games to prove the properness and the Sacks property.
We decided to use the fusion sequences instead of games because it will be easier to
work with sequences rather than with games when dealing with the iteration.

3 Forcing with S(U) preserves cmin-covering

It is easy to see that if X ⊆ 2ω is cmin-monochromatic, then the closure X is also cmin-
monochromatic. In this way, hm is the smallest size of a family of cmin-monochromatic
closed sets that covers 2ω . We will say that a tree T ⊆ 2<ω is cmin-monochromatic if [T]
is cmin-monochromatic. This means that T either only splits at odd levels or at even
levels.

Definition 32 We say that a forcing notion P preserves cmin-covering if for every
p ∈ P and for every P-name ẋ for a real in 2ω , there are q ≤ p and T ∈ V a cmin-
monochromatic tree such that q ⊩ “ẋ ∈ [T] .”

Recall that if P is a partial order, p ∈ P and ẋ a P-name for a new element of 2ω ,
we defined ẋ [p] = ⋃{t ∈ 2<ω ∣ p ⊩ “t ⊆ ẋ”} . Since ẋ is forced to be a new real, then
ẋ [p] ∈ 2<ω . Note that for every p ∈ P there are q, r ≤ p such that ẋ [q] and ẋ [r] are
incompatible elements of 2<ω . In this section, we will prove that Shelah’s forcing S(U)
preserves cmin-covering. We will deal with the iteration in later sections. For the rest
of this section, fix ẋ a S(U)-name for a new real. Recall that a condition p is ẋ-nice if
p[h] determines ẋ ↾ n for every h ∶ n �→ 2.

Definition 33 Let p ∈ S(U), define Sp (ẋ) = ⋃{ẋ [p[h]] ∣ h ∈ 2<ω} .

It is easy to see that if p is ẋ-nice, then Sp(ẋ) is a tree and p ⊩ “ẋ ∈ [Sp(ẋ)].” Recall
that a tree p ⊆ 2<ω is a Sacks tree if for for every s ∈ p there is t ∈ p such that s ⊆ t and
t is a splitting node of p (i.e., t⌢0, t⌢1 ∈ p). Since ẋ is a new real, Sp (ẋ) is a Sacks tree.
Recall that the set of all ẋ-nice conditions is a dense set.

Lemma 34 Let p be ẋ-nice and n > 0.
1. If h ∶ n �→ 2 then there is q ≤n p such that ẋ [q [h⌢0]] and ẋ [q [h⌢1]] are incom-

patible (as nodes in the tree 2<ω).
2. There is r ≤n p such that ẋ [r [h⌢0]] and ẋ [r [h⌢1]] are incompatible for every h ∶

n �→ 2.

Proof Let h ∶ n �→ 2 and since Sp (ẋ) is a Sacks tree, there must be h⌢0 ⊆ g0
0 , g1

0
and h⌢1 ⊆ g0

1 , g1
1 such that both ẋ[p[g0

0]] and ẋ[p[g1
0]] are incompatible and both

ẋ[p[g0
1 ]] and ẋ[p[g1

1]] are incompatible. We may also assume there is m such that
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all g0
0 , g1

0 , g0
1 and g1

1 have m as its domain. There must be i , j such that ẋ[p[g i
0]] and

ẋ[p[g j
1 ]] are incompatible, with out loosing generality, we may assume i = j = 0. We

define the condition q ≤ p with the following properties:
1. Eq = Ep/{[ap(l)]p ∣ l ∈ (n, m)}.
2. If l ∈ (n, m) and f ∶ 2Ap∩ap(l) �→ 2 then the following holds:

(a) If f (ap(n)) = 0 then Hap(l)
q ( f ) = g0

0(l).
(b) If f (ap(n)) = 1 then Hap(l)

q ( f ) = g0
1 (l).

Note that q [h⌢0] = p[g0
0] and q [h⌢1] = p[g0

1 ], so the result immediately follows.
The second part of the lemma is proved by applying iteratively the first part. ∎
We need the following notion:

Definition 35 Let p be an ẋ-nice condition and n ∈ ω. We say that p is n-separating if
for all h, g ∶ n + 1 �→ 2 then ẋ [p[h]] and ẋ [p [g]] are incompatible whenever h ≠ g .
We say p is ω-separating if it is n-separating for every n ∈ ω.

Note that if p is n-separating and q ≤∗n p then q is n-separating too (see Lemma 23).
For convenience, we will say that every n-nice condition is −1-separating.
Lemma 36 If p is (n − 1)-separating then D = {r ≤∗n p ∣ r is n-separating} is ≤∗n-open
dense below p.
Proof Note that D is ≤∗n-open by the previous remark, we will see it is also ≤∗n-dense
below p. Let q ≤∗n p and by the previous lemma, we can find r ≤n q (so r ≤∗n q) such
that for that ẋ [r [h⌢0]] and ẋ [r [h⌢1]] are incompatible for every h ∶ n �→ 2. Since
p is (n − 1)-separating, r is n-separating. ∎

We can now conclude the following:
Corollary 37 The set of all ω-separating conditions is dense. Furthermore, if p is n-nice,
then there is q ≤∗n p such that q is ω-separating.
Proof Let p ∈ S(U) be an n-nice condition, we will prove p has a ω-separating
extension. We recursively construct a 1-fusion sequence T = ⟨q i , r i⟩i<ω with the
following properties:
1. q0 and r0 are two incompatible extensions of p with Eq0 = Er0 .
2. Both q i , r i are i-separating.

This can be done by Lemmas 17 and 36. It is easy to see that any fusion of T will
have the desired properties. ∎

If s, t ∈ 2<ω are two incompatible finite sequences, define cmin (s, t) to be the parity
of the length of the biggest initial segment shared by both s and t. Note that this is an
abuse of notation since the domain of cmin is [2ω]2 . We will now define the following:
Definition 38 Let p ∈ S(U), n ∈ ω and i < 2. The condition p is called (n, i)-faithful
if p is n-separating and cmin (ẋ [p[h]] , ẋ [p [g]]) = i for every h, g ∈ 2n+1 such that
h ≠ g .

If p is (n, i)-faithful and q ≤∗n p, then q is also (n, i)-faithful (see Lemma 23). Once
again, for convenience, we will say that p is (−1, i)-faithful if p is ẋ-nice. We can finally
prove the main result on this section.
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Proposition 39 If U is an ultrafilter, then S (U) preserves cmin-covering.

Proof Let ẋ be a S(U)-name for a new element of 2ω . Fix a condition p that is ω-
separating. Given n ∈ ω, q ≤ p and h ∶ n �→ 2, let Iq (h) be the union of all the classes
[aq(m)]q with the following properties:
1. n < m.
2. For every function g ∈ 2m with the property that h ⊆ g, we have that

cmin (ẋ [q [g⌢0]] , ẋ [q [g⌢1]]) = 1.
We will now proceed by cases, first assume there are q ≤ p and h ∈ 2<ω such

that Iq (h) ∈ U. Let r ≤ q[h] such that dom (Er) = Iq (h) and every H l
r is a constant

function for l ∈ Aq/Ar . It is then easy to see that Sr (ẋ) is a 1-monochromatic tree and
we are done.

Now, we assume that Iq (h) ∉ U for every q ≤ p and h ∈ 2<ω . Given q ≤ p and n < ω
let Fn (q) = {r ≤∗n q ∣ r is (n, 0)-faithful}.

Claim 40 If q is (n − 1, 0)-faithful then Fn (q) is ≤∗n-open dense below q.

It is clear that Fn+1 (q) is ≤∗n-open below q, we will now prove that it is also
≤∗n-dense. Let r ≤∗n q, we will extend r to a (n, 0)-faithful condition. Every ≤∗n-
extension of q is n-nice, so by Corollary 37, we may assume that r is ω-separating. Let
2n+1 = {h i ∣ i < k} . We know B = Ir (h1) ∪⋯ ∪ Ir (hk) ∈ U∗ (since each Ir (h i) ∈ U∗
by hypothesis) and since B is the union of Er-classes, then there is m > n + 1 such
that [ar(m)]r ∩ B = ∅. Since ar(m) ∉ Ir(h i), then for every i < k, there is g i ∶ m �→ 2
extending h i such that cmin (ẋ [r [g⌢i 0]] , ẋ [r [g⌢i 1]]) = 0 (recall that r is ω-separating,
so in particular it is m-nice for every m ∈ ω). We now define a condition r1 with the
following properties:
1. r1 ≤n r.
2. dom (Er1) = dom (Er) /⋃{[ar(l)]r ∣ n < l < m} .
3. If m ≤ l then [ar1(l)]r1 = [ar(l)]r .
4. If n < l < m and f ∈ 2Ar1∩ar(l) then Har(l)

r1 ( f ) = g i(l), where i < k is (the unique)
such that f (ar( j)) = h i( j) for every j ≤ n.
It is now easy to see that r1 is (n, 0)-faithful, this finishes the proof of the claim.
We now recursively construct a 1-fusion sequence T = ⟨q i , r i⟩i<ω with the follow-

ing properties:
1. q0 and r0 are two incompatible extensions of p with Eq0 = Er0 .
2. Both q i and r i are (i , 0)-faithful.

Let p be a fusion of T . It follows that p is an extension of p and Sp (ẋ) is a
0-monochromatic tree. ∎

4 Iterating the Shelah forcing

Our next task is to prove that if we perform a countable support iteration ⟨Pα , Q̇α ∣
α ≤ ω2⟩ such that for Pα ⊩ “Q̇α = S(U̇α)” for all α < ω2 (where U̇α is a Pα-name for
an ultrafilter), then Pω2 preserves cmin-covering. We do not know, in general, if the
iteration of forcings that preserve cmin-covering preserves cmin-covering, but we were
able to prove it in our case. In this section, we will prove some technical lemmas
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regarding the iteration that will be useful in the following sections. Right now, our
purpose is to extend our work with fusion sequences to every Pα . We hope that the
material developed in this section will have more applications in the future, since
it provides a very convenient way to work with the iteration of forcings of the form
S (U) . Moreover, it should be possible to perform a similar analysis for other forcings
that do not have an axiom A structure, yet its main properties (like properness, not
adding unbounded reals. . .) are proved using games or trees (the first example that
comes to mind is the Grigorieff forcing of a P-point).

For the following sections, fix a countable support iteration ⟨Pα , Q̇α ∣ α ≤ ω2⟩ as
described in the beginning of the section.

Definition 41 Let α ≤ ω2 , F ∈ [α]<ω , η ∶ F �→ ω and p, q ∈ Pα .
1. Define p ≤F ,η q if p ≤ q and for every β ∈ F it is the case that p ↾ β ⊩ “p (β) ≤η(β)

q(β).”
2. p ≤∗F ,η q if p ≤ q and for every β ∈ F it is the case that p ↾ β ⊩ “p(β) ≤∗η(β) q(β).′′

3. If σ ∈ ∏
β∈F

2η(β), we define the condition p ∗ σ ∈ Pα as follows:

(a) If δ ∉ F then (p ∗ σ) ↾ δ ⊩ “ (p ∗ σ) (δ) = p (δ) .”
(b) If δ ∈ F then (p ∗ σ) ↾ δ ⊩ “ (p ∗ σ) (δ) = p (δ) [σ (δ)] ” (recall that σ (δ) ∈

2η(δ)).

In a similar way as before, define the following:

Definition 42 Let α ≤ ω2 , F ∈ [α]<ω , η ∶ F �→ ω, p ∈ Pα and D ⊆ Pα .
1. D is (F , η)∗-dense below p if for every q ≤∗F ,η p there is r ≤∗F ,η q such that r ∈ D.
2. D is (F , η)∗-open below p if for every r such that r ≤∗F ,η p and r ∈ D then q ∈ D

whenever q ≤∗F ,η r.
3. D is (F , η)∗-open dense below p if it is both (F , η)∗-open and (F , η)∗-dense below

p.
4. D is (F , η)-dense below p if for every q ≤F ,η p there is r ≤F ,η q such that r ∈ D.
5. D is (F , η)-open below p if for every r such that r ≤F ,η p and r ∈ D then q ∈ D

whenever q ≤F ,η r.
6. D is (F , η)-open dense below p if it is both (F , η)-open and (F , η)-dense below p.

We use similar conventions as before. The expression “D is (F , η)-dense” actually
means that D is (F , η)-dense below the largest condition (similarly for the other
notions). The expression “D is (F , η)-open and (F1 , η1)-dense below p” is a shorthand
for “D is (F , η)-open below p and (F1 , η1)-dense below p.” Note that if F ⊆ F1, η ≤ η1 ↾
F1 and D is (F , η)-open below p, then D is (F1 , η1)-open below p.

Let η ∶ F �→ ω, by η + 1 ∶ F �→ ω we denote the function given by (η + 1) (α) =
η (α) + 1. For η1 , η2 ∈ ωF , define η1 ≤ η2 if η1 (α) ≤ η2 (α) for every α ∈ F .

The following is the generalization of Lemma 23:

Lemma 43 Let α ≤ ω2 , F ∈ [α]<ω , η ∶ F �→ ω, p, q ∈ Pα such that q ≤∗F ,η p. If
σ ∈ ∏

β∈F
2η(β)+1 , then q ∗ σ ≤ p ∗ σ .

If D ⊆ Pα is an open dense set and F ∈ [α]<ω , η ∶ F �→ α, define D̃F ,η = {p ∈ Pα ∣
∀σ ∈ ∏

δ∈F
2η(δ) (p ∗ σ ∈ D)}.
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Lemma 44 Let D ⊆ Pα be an open dense set, F ∈ [α]<ω and η ∶ F �→ α. The set
D̃F ,η = {r ∈ Pα ∣ ∀σ ∈ ∏

δ∈F
2η(δ) (r ∗ σ ∈ D)} is (F , η)-open dense.

Proof We will first prove that D̃F ,η is (F , η)-dense. Let p be a condition, enumerate
∏
δ∈F

2η(δ) = {σi ∣ i ≤ k} . Recursively, we build {p i ∣ i ≤ k} such that the following

holds:

1. p0 ≤F ,η p.
2. p i+1 ≤F ,η p i for i + 1 ≤ k.
3. p i ∗ σi ∈ D.

This is easy to do. It follows that pk ∈ D and pk ≤F ,η p. It is easy to see that D̃F ,η is
(F , η)-open. ∎

We will recall a well-known forcing lemma that will be frequently used (for a proof,
see Lemma 1.19 in the first chapter of the book [14]):

Lemma 45 (Definition by cases) Let P be a partial order, A = {pα ∣ α ∈ κ} ⊆ P an
antichain and {ẋα ∣ α ∈ κ} be a set of P-names. There is a P-name ẏ such that pα ⊩
“ ẏ = ẋα” for every α ∈ κ.

The following technical notion will be frequently used:

Definition 46 Let M be a countable elementary submodel of H(κ) (for some big
enough regular κ) and α ∈ M an ordinal. We say that L = {(Fn , ηn) ∣ n ∈ ω} is suitable
for (M , α) if the following holds for every n ∈ ω:

1. Fn is a finite subset of M ∩ α.
2. Fn ⊆ Fn+1 .
3. ∣Fn ∣ ≤ n and ∣Fn+1∣ ≤ ∣Fn ∣ + 1.
4. ⋃

n∈ω
Fn = M ∩ α.

5. ηn ∶ Fn �→ ω.
6. ηn ≤ ηn+1 ↾ Fn
7. If β ∈ M ∩ α then ⟨ηn(β)⟩n∈ω �→∞.

Note that if L = {(Fn , ηn) ∣ n ∈ ω} is suitable for (M , α) , then Fn , ηn ∈ M for every
n ∈ ω (however, it may be the case that L ∉ M). The following lemma is easy and left
to the reader:

Lemma 47 Let M be a countable elementary submodel of H(κ), α ∈ M and L =
{(Fn , ηn) ∣ n ∈ ω} suitable for (M , α) . Let β ∈ M ∩ α, define F′n = Fn ∩ β, η′n = ηn ↾
F′n and L′ = {(F′n , η′n) ∣ n ∈ ω} . Then L′ is suitable for (M , β) .

The following is the generalization of a 1-fusion sequence:

Definition 48 Let M be a countable elementary submodel of H(κ) (for some big
enough regularκ) such thatPα ∈ M and L = {(Fn , ηn) ∣ n ∈ ω} be suitable for (M , α) .
We say that a tree T ⊆ (Pα ∩ M)<ω (ordered by end-extension) is an α-fusion tree
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(with respect to M and L) if there are dT
− , wT

− ∶ T �→ Pα and ⟨ėT
n , u̇T

n ⟩n∈ω a sequence
of Pα-names such that the following conditions hold:

1. ∣T0∣ = 1 and if s = ⟨p0 , . . . , pn⟩ ∈ T , then pm+1 ≤∗Fm ,ηm
pm for every m < n.

2. If s ∈ T , then sucT(s) = {dT
s , wT

s } .
3. If Fn+1 = Fn and s ∈ Tn , then dT

s = wT
s (so s has only one immediate successor

in T).
4. Let n ∈ ω such that Fn+1/Fn ≠ ∅. Pick γ the (unique) element of Fn+1/Fn and s =
⟨p0 , . . . , pn⟩ ∈ Tn . The following conditions hold:
(a) sucT(s) = {dT

s , wT
s } .

(b) dT
s ↾ γ = wT

s ↾ γ.
(c) dT

s ↾ γ ⊩ “dT
s (γ) = ėnT ” and wT

s ↾ γ ⊩ “wT
s (γ) = u̇T

n .”
(d) dT

s ↾ γ (= wT
s ↾ γ) forces that ėT

n , u̇T
n are incompatible elements of S(U̇γ) but

E ėT
n
= Eu̇T

n
.

5. Assume s = ⟨p0 , . . . , pn⟩ , t = ⟨p′0 , . . . , p′n⟩ , m = △(s, t) and γ ∈ Fm+1/Fm . If pn ↾
γ = p′n ↾ γ the following holds:
(a) In case Fn ≠ Fn+1 the following holds:

i. dT
s ↾ γ = dT

t ↾ γ and wT
s ↾ γ = wT

t ↾ γ.
ii. dT

s ↾ γ ⊩ “ ⟨pn(γ), p′n(γ), dT
s (γ), dT

t (γ)⟩ is an ηn(γ)-nice sequence.”
iii. wT

s ↾ γ ⊩ “ ⟨pn(γ), p′n(γ), wT
s (γ), wT

t (γ)⟩ is an ηn(γ)-nice sequence.”
(b) In case Fn = Fn+1 , we have the following:

i. dT
s ↾ γ = dT

t ↾ γ.
ii. dT

s ↾ γ ⊩ “ ⟨pn(γ), p′n(γ), dT
s (γ), dT

t (γ)⟩ is an ηn(γ)-nice sequence.”

Since this definition is crucial for the paper, we find it convenient to make the
following clarifications:

1. We view dT
− , wT

− ∶ T �→ Pα as operators that help us define the immediate succes-
sors of a node of T . In this way, if s ∈ Tn , then the immediate successors of s are s⌢dT

s
and s⌢wT

s . We also have that s⌢dT
s = s⌢wT

s (so s has only one immediate successor)
if and only if Fn+1 = Fn .

2. Let n ∈ ω and γ are such that γ ∈ Fn+1/Fn . If s ∈ Tn , then ḋT
s (γ) is forced to be ėT

n
and ẇT

s (γ) is forced to be u̇T
n . Note that ėT

n and u̇T
n depend only on n and not in s.

In this way, if t is also in Tn , then ḋT
t (γ) is also forced to be ėT

n and ẇT
t (γ) is also

forced to be u̇T
n . However, since ėT

n and ẇT
s (γ) are names and not “real objects,”

it might be the case that ḋT
s ↾ γ and ḋT

t ↾ γ evaluate ėT
n in very different ways (the

same for ẇT
s ↾ γ and ẇT

t ↾ γ).
3. By “T is a fusion tree,” we mean that T is an α-fusion tree for some α.
4. In case Fn+1 = Fn , we have no use for ėT

n and u̇T
n . In the definition of α-fusion tree,

we could have asked that ėT
n and u̇T

n are only defined for the n ∈ ω such that Fn+1 ≠
Fn . We did not do it this way because we thought it would only add extra complexity
to the (already quite complex) definition. In the paper, when we are building fusion
trees, we will simply leave this case undefined.

5. In the definition of fusion tree, we demanded that T ⊆ M , so the operators dT
− and

wT
− must always take values in M and the names ėT

n and u̇T
n must always be in M .
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6. If T is a fusion tree, the operators will always be denoted by dT
− and wT

− and the
sequence of names will always be ėT

n and u̇T
n for n ∈ ω. However, if there is no risk

of confusion, we will simply write ds , ws , ėn , and u̇n instead of dT
s , wT

s , ėT
n , and u̇T

n .
7. For the convenience of the reader, whenever there is a fusion tree around, every

occurrence of d , w , e, and u (with either subindices or superinduces) refer to the
operators of a fusion tree.
The definition of 1-fusion sequence from the previous section is essentially the same

as the one of a 1-fusion tree, the only difference is the presence for the elementary
submodel (in fact, the role of M is simply to help us with bookkeeping arguments, but
it really could be avoided if we wanted). If a tree T ⊆ (Pα ∩ M)<ω of height k satisfy
all the above properties but only for n ≤ k, we will say that T is an α-finite fusion tree
of height k.

Lemma 49 Let M be a countable elementary submodel of H(κ), α ∈ M , L =
{(Fn , ηn) ∣ n ∈ ω} suitable for (M , α) and T ⊆ (Pα ∩ M)<ω an α-fusion tree (with
respect to M and L). Let n ∈ ω and s = ⟨p0 , . . . , pn+1⟩ , t = ⟨q0 , . . . , qn+1⟩ ∈ Tn+1 . If s ≠ t,
then pn+1 and qn+1 are incompatible.

Proof Let m = △(s, t) , by point 4 of definition 48, we get that pm and qm are
incompatible. Since pn+1 ≤ pm and qn+1 ≤ qm , the result follows. ∎

By the above lemma, given T ⊆ (Pα ∩ M)<ω an α-fusion tree, we could identify
each s = ⟨p0 , . . . , pn⟩ ∈ T with its last element. There is no risk of confusion by the
lemma. Using this identification, the order of the tree corresponds with the order of
Pα . In this section, we will not use the identification, but it will be convenient in later
sections when the notation becomes even more involved (we will warn the reader
when we use this abuse of notation).

In order to use inductive arguments, we need to restrict an α-fusion tree to a
lesser ordinal. The objective of the following definitions and results is to prove that
the restriction of a fusion tree is a fusion tree.

Definition 50 Let T be an α-fusion tree and β < α. Define ∼β a relation on T as
follows: given s = (ps

0 , . . . , ps
n) and t = (pt

0 , . . . , pt
n) , define s ∼β t if the following

conditions hold:
1. n = m.
2. ps

i ↾ β = pt
i ↾ β for every i ≤ n.

It is easy to see that ∼β is an equivalence relation on T . We now have the following:

Lemma 51 Let M be a countable elementary submodel of H(κ), α ∈ M and L =
{(Fn , ηn) ∣ n ∈ ω} suitable for (M , α) . Let β ∈ M ∩ α, define F′i = Fi ∩ β for every
i ∈ ω. Let n ∈ ω and s, z ∈ Tn such that s ∼β z. The following holds:
1. ds ↾ β = dz ↾ β and ws ↾ β = wz ↾ β.
2. (s⌢ds) ∼β (z⌢dz) and (s⌢ws) ∼β (z⌢wz) .
3. If F′n+1/F′n ≠ ∅, then ds ↾ β ≠ ws ↾ β.
4. If F′n+1/F′n = ∅, then ds ↾ β = ws ↾ β.

Proof We will first prove point 1. Denote by A the ∼β-equivalence class of s (and of
z as well, obviously). Let a = (pa

0 , . . . , pa
n) and b = (pb

0 , . . . , pb
n) be two elements of A
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and ξ < α. We say that ξ is a disagreement point of a and b if the following conditions
hold:
1. There is m ≤ n such that ξ ∈ Fm+1/Fm .
2. Denote a = (pa

0 , . . . , pa
m−1) and b = (pb

0 , . . . , pb
m−1) . Either pa

m = da and pb
m = wb

or pa
m = wa and pb

m = db .
Note that if ξ is a disagreement point of a and b, then β ≤ ξ (this is because a ∼β

b). Denote by dis (a, b) the set of all disagreement points of a and b. The following
remarks are easy to see:
1. dis (a, b) is a finite set and β ∩ dis (a, b) = ∅.
2. dis (a, b) = ∅ if and only if a = b.
3. If △(a, b) = m and ξ ∈ Fm+1/Fm , then ξ ∈ dis (a, b) .

We will say that a and b are near if dis (a, b) has at most one element. We will now
prove the following:

Claim 52 Let a, b ∈ A. If a and b are near, then da ↾ β = db ↾ β and wa ↾ β = wb ↾ β.

Let a = (pa
0 , . . . , pa

n) and b = (pb
0 , . . . , pb

n) . If a = b, the claim is trivially true, so
assume that a ≠ b. Let ξ ∈ dis (a, b) and m ∈ ω such that ξ ∈ Fm+1/Fm . We claim that
a ∼ξ b (in other words, pa

i ↾ ξ = pb
i ↾ ξ for every i ≤ n).

1. If i < m, then pa
i = pb

i (so pa
i ↾ ξ = pb

i ↾ ξ).
2. If i = m, then pa

i ↾ ξ = pb
i ↾ ξ by point 5(a) of Definition 48.

3. If i > m, then pa
i ↾ ξ = pb

i ↾ ξ because T is fusion tree and ξ is the only point of
disagreement between a and b.
We will provide more details for the last point. We proceed by induction over i .

Assume that pa
i ↾ ξ = pb

i ↾ ξ for m ≤ i < n, we will prove that pa
i+1 ↾ ξ = pb

i+1 ↾ ξ. In
case Fi+1 = Fi , the conclusion follows by point 5(b) of Definition 48. Now assume
that Fi+1 ≠ Fi and let δ ∈ Fi+1/Fi . Since δ is not a disagreement point, by point 5(a)
of Definition 48, we conclude that pa

i+1 ↾ ξ = pb
i+1 ↾ ξ.

In particular, we get that pa
n ↾ ξ = pb

n ↾ ξ. By point 5 of Definition 48, we get that
da ↾ ξ = db ↾ ξ and wa ↾ ξ = wb ↾ ξ. Since β ≤ ξ, we conclude that da ↾ β = db ↾ β and
wa ↾ β = wb ↾ β. This finishes the proof of the claim.

Claim 53 Let a, b ∈ A with a ≠ b. There is c ∈ A such that the following holds:
1. a and c are near.
2. ∣dis (c, b)∣ < ∣dis (a, b)∣ .

Let a = (pa
0 , . . . , pa

n) , b = (pb
0 , . . . , pb

n) , m = △(a, b), and ξ ∈ Fm+1/Fm . Define
c = (pc

0 , . . . , pc
n) as follows:

1. pc
i = pa

i for i < m (so pc
i = pb

i ).
2. pc

m = pb
m .

3. Let i ≥ m, denote a = (pa
0 , . . . , pa

i ) and c = (pc
0 , . . . , pc

i ) . Let pc
i+1 = dc if pa

i+1 = da
and pc

i+1 = wc if pa
i+1 = wa .

Note that c is in the tree T since we are always taking the successor of a node in T .
It follows by the construction that △(a, c) = m and by point 5 of Definition 48, we
get that pc

i ↾ ξ = pa
i ↾ ξ for all i ≤ n, hence c ∈ A. It is clear that a and c are near and

∣dis (c, b)∣ = ∣dis (a, b)∣ − 1. This finishes the proof of the claim.
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We can now finish the proof of the first point of the lemma. Recall that s ∼β z and
we wanted to prove that ds ↾ β = dz ↾ β and ws ↾ β = wz ↾ β. Now, by claim 53, we can
find a sequence (a0 , . . . , ak) such that for every i ≤ k, the following conditions hold:
1. a i ∈ A.
2. a0 = s and ak = z.
3. a i+1 is near of a i .

By Claim 52, we conclude that ds ↾ β = dz ↾ β and ws ↾ β = wz ↾ β.
The second point of the lemma follows by the first one, we will now prove the

third point. Assume that F′n+1/F′n ≠ ∅, we want to prove that ds ↾ β ≠ ws ↾ β. Let
γ ∈ F′n+1/F′n . Since F′n+1 = Fn+1 ∩ β and F′n = Fn ∩ β, it follows that γ < β. By point 4
of definition 48, we know that ds and ws differ in the γ component, which entails that
ds ↾ β ≠ ws ↾ β.

We now prove point 4 of the lemma. Assume that F′n+1/F′n = ∅, we want to prove
that ds ↾ β = ws ↾ β. If Fn+1/Fn = ∅, it follows by point 3 of Definition 48 that ds = ws ,
so ds ↾ β = ws ↾ β. Assume now that Fn+1/Fn ≠ ∅. Let γ ∈ Fn+1/Fn . Since F′n+1/F′n = ∅,
it must be the case that β ≤ γ. By point 5 of Definition 48 we know that ds ↾ γ = ws ↾ γ,
which implies that ds ↾ β = ws ↾ β. ∎

We can now make the following definition:
Definition 54 Let M be a countable elementary submodel of H(κ) (for some big
enough regular cardinal κ) such that Pα ∈ M , L = {(Fn , ηn) ∣ n ∈ ω} suitable for
(M , α) and T ⊆ (Pα ∩ M)<ω an α-fusion tree. Let β < α with β ∈ M .
1. Define T ↾ β as the tree in P<ω

β obtained by restricting every condition of T to β.
In other words, if s = ⟨p0 , . . . , pn⟩ ∈ T , then s′ = ⟨p0 ↾ β, . . . , pn ↾ β⟩ ∈ T ↾ β.

2. Let s = ⟨p0 , . . . , pn⟩ ∈ T and z = ⟨p0 ↾ β, . . . , pn ↾ β⟩ . Define dT↾β
z = dT

s ↾ β and
wT↾β

z = wT
s ↾ β.

3. For every n ∈ ω such that (Fn+1/Fn) ∩ β ≠ ∅, let ėT↾β
n = ėT

n and ẇT↾β
n = ẇT

n

The operators dT↾β
_ and wT↾β

_ are well defined by Lemma 51. We need that the
restriction of a fusion tree is a fusion tree. This is the content of the following
proposition.
Proposition 55 Let M be a countable elementary submodel of H(κ), α ∈ M and L =
{(Fn , ηn) ∣ n ∈ ω} suitable for (M , α) . Let β ∈ M ∩ α, define F′n = Fn ∩ β, η′n = ηn ↾
F′n and L′ = {(F′n , η′n) ∣ n ∈ ω} . If T ⊆ (Pα ∩ M)<ω is an α-fusion tree (with respect to
M and L), then T ↾ β ⊆ (Pβ ∩ M)<ω is a β-fusion tree (with respect to M and L′).
Proof We already noted that L′ is suitable for (M , β) . Let S = T ↾ β. For
this proof, we adopt the following convention: if s = ⟨q0 , . . . , qn⟩ ∈ T , define s′ =
⟨q0 ↾ β, . . . , qn ↾ β⟩ (we are not assuming this convention outside this proof, unless
when we mention it explicitly). Note that Sn = {s′ ∣ s ∈ Tn} for every n ∈ ω. We will
prove that S is a β-fusion tree. The first point from Definition 48 is clear.

Note that for every s ∈ S there may be many t ∈ T such that t′ = s.
This is where Lemma 51 comes into play. It is easy to see that sucS(s) =
{x ↾ β ∣ ∃t ∈ T (t′ = s ∧ x ∈ sucT (t))} . Point 2 from Definition 48 follows by
point 1 of Lemma 51. Point 3 of the definition of fusion tree follows by point 4 of
Lemma 51. Point 4 follows from the definition of T ↾ β and Lemma 51.
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We will now prove point 5 of the definition of fusion tree. Let s = ⟨ps
0 , . . . , ps

n⟩ and
t = ⟨pt

0 , . . . , pt
n⟩ two nodes in S , m = △(s, t) , γ ∈ F′m+1/F′m such that ps

n ↾ γ = pt
n ↾ γ.

now we need the following:

Claim 56 There are a = ⟨pa
0 , . . . , pa

n⟩ and b = ⟨pb
0 , . . . , pb

n⟩ nodes in T such that:
1. a′ = s and b′ = t.
2. m = △(a, b) .

We proceed to prove the claim. First, note that if a′ = s and b′ = t, then △(a, b) ≤
m. We need to prove that we can realize the value m. In order to do that, it is enough
to prove the following: If a, b are such that a′ = s and b′ = t and m1 = △(a, b) < m,
then there are a1 , b1 with the following properties:
1. a′1 = s.
2. b′1 = t.
3. m1 < △(a1 , b1) .

Let ξ ∈ Fm1+1/Fm1 . Since m1 < m, it must be the case that β ≤ ξ. We now define
c = ⟨pc

0 , . . . , pc
n⟩ as follows:

1. If i < m1 , then pc
i = pb

i (so pc
i = pa

i as well).
2. If i = m1 , then pc

m1
= pb

m1
.

3. If i > m, denote a = (pa
0 , . . . , pa

i ) and c = (pc
0 , . . . , pc

i ) . Let pc
i+1 = dc if pa

i+1 = da
and pc

i+1 = wc if pa
i+1 = wa .

It follows that c′ = a′ (since β ≤ ξ and by point 5 of the definition of fusion tree)
and m1 < △(c, b) , so c and b have the desired properties. This finishes the proof of
the claim.

We now return to prove that S satisfies point 5 of the definition of fusion tree. Using
the claim above, we pick a = ⟨pa

0 , . . . , pa
n⟩ and b = ⟨pb

0 , . . . , pb
n⟩ such that a′ = s, b′ = t

and m = △(a, b) . Since ps
n ↾ γ = pt

n ↾ γ, it follows that pa
n ↾ γ = pb

n ↾ γ. Recall that
dS

s = dT
a ↾ β, wS

s = wT
a ↾ β and dS

t = dT
b ↾ β, wS

t = wT
b ↾ β. We need to proceed by cases:

Case 57 F′n+1 ≠ F′n .

In particular, we get that Fn+1 ≠ Fn . Since T is a fusion tree (in particular, it satisfies
point 5(a) of Definition 48), we get the desired conclusion.

Case 58 F′n+1 = F′n and Fn+1 = Fn .

In this case, we use that T satisfies point 5(b) of Definition 48 and we are done.

Case 59 F′n+1 = F′n and Fn+1 ≠ Fn .

For this case, we must prove that dS
s ↾ γ = dS

t ↾ γ. Since T satisfies point 5(a) of
Definition 48, we are fine in this case.

This finishes the proof that S is a fusion tree. ∎
We will need the following lemma later on.

Lemma 60 Let M be a countable elementary submodel of H(κ), β + 1 ∈ M and L =
{(Fn , ηn) ∣ n ∈ ω} suitable for (M , β + 1) . Let T be a (β + 1)-fusion tree and n ∈ ω the
first such that β ∈ Fn+1 . Let m > n and s = ⟨ps

0 , . . . , ps
m⟩ ∈ Tm . There is a unique t =

⟨pt
0 , . . . , pt

m⟩ ∈ Tm such that △(s, t) = n and s ∼β t.
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Proof Define t = ⟨pt
0 , . . . , pt

m⟩ as follows:
1. If i < n, then pt

i = ps
i .

2. If i = n, let a = ⟨ps
0 , . . . , ps

n−1⟩ (so a = ⟨pt
0 , . . . , pt

n−1⟩). Let pt
n ∈ sucT(a) such that

pt
n ≠ ps

n .
3. For i > n, let s = ⟨ps

0 , . . . , ps
i−1⟩ and t = ⟨pt

0 , . . . , pt
i−1⟩ . Define pt

i = dt if ps
i = ds and

pt
i = wt if ps

i = ws .
We clearly have that △(s, t) = n and s ∼β t. We will now prove that there cannot

be more that one. Assume that there is a = ⟨pa
1 , . . . , pa

m⟩ ∈ Tm with the following
properties:
1. a ≠ t and a ≠ s.
2. △(a, s) = △(t, s) = n.
3. pa

i ↾ β = ps
i ↾ β = pt

i ↾ β for every i ≤ m.
By the above properties, we must have that n < △(a, t) . Let k = △(a, t) and ξ ∈

Fk+1/Fk . Since n < k, we get that ξ ≠ β, so ξ < β. We will now have that pa
k+1 ↾ (ξ + 1) ≠

ps
k+1 ↾ (ξ + 1) , so pa

k+1 ↾ β ≠ ps
k+1 ↾ β, which is a contradiction. ∎

The following lemma will play a key role in our work:

Definition 61 Let T be an α-fusion tree and q ∈ Pα . We say q is compatible with T if
there is a Pα-name for a (possibly new) branch Ṙ of T such that q ⊩“Ṙ ⊆ Ġ” (where
Ġ is the name for the Pα-generic filter).

In the above definition, we are identifying a branch with its image. The following
result was inspired by the “properness iteration lemma” used to prove that the iteration
of proper forcing is proper (see [1, 14]).

Lemma 62 Let M be a countable elementary submodel of H(κ), α, β ∈ M with β < α
and T an α-fusion tree. Assume there is q ∈ Pβ that is compatible with T ↾ β. There is
ṙ such that q⌢ ṙ ∈ Pα and q⌢ ṙ is compatible with T . Moreover, if Ṙ is a Pβ-name for a
branch through T ↾ β such that q ⊩“Ṙ ⊆ Ġβ ,” then there is Ṙ′ a Pα-name for a branch
through T such that q⌢ ṙ ⊩ “Ṙ′ ⊆ Ġα” and q⌢ ṙ ⊩ “Ṙ′ ↾ β = Ṙ”(Ġβ is the Pβ-name for
the generic filter of Pβ and Ġα is the Pα-name for the generic filter of Pα).

Proof We prove it by induction on α, the case α = 1 follows from the argument of
Lemma 20. Now assume α = δ + 1 and the lemma holds for δ. We first tackle the case
of β = δ.

Let G ⊆ Pβ be a generic filter with q ∈ G . Find n the first natural number such that
β ∈ Fn . For the moment, we work in V [G] . In V [G] define the following set:

H = {s ∈ T ∣ s ↾ β ∈ Ṙ [G] ∧ ∣s∣ > n}.

In other words, for every s = ⟨p0 , . . . , p l ⟩ ∈ T we have that s ∈ H if and only if l ≥ n
and ⟨p0 ↾ β, . . . , p l ↾ β⟩ is an initial segment of the branch Ṙ [G] .

Claim 63 If m > n, then ∣Tm ∩ H∣ = 2 (in V [G]).
We prove the claim. Since Ṙ [G] is a branch, it follows that Tm ∩ H has at least

one element. Let s = ⟨p0 , . . . , pm⟩ ∈ Tm ∩ H, by Lemma 60, there is a unique t =
⟨q0 , . . . , qm⟩ ∈ Tm such that△(s, t) = n and q i ↾ β = p i ↾ β for every i ≤ m. It follows
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that t ∈ Tm ∩ H, so Tm ∩ H has at least two elements. Furthermore, if there was
u = ⟨r0 , . . . , rm⟩ ∈ Tm ∩ H with u ≠ s, we must have that △(s, u) = n (because if k =
△(s, u) ≠ n, then rk ↾ β would be incompatible with pk ↾ β by point 4 of Definition
48, so rm ↾ β and pm ↾ β would be incompatible, but this is a contradiction since
both are in the generic filter). Since t is unique, it follows that Tm ∩ H has exactly
two elements.

It will be convenient to introduce some notation. Given K ⊆ T , define Last (K) =
{s (∣s∣ − 1) ∣ s ∈ K} . In other words, Last (K) is obtained by collecting all the last
component of every sequence in K .

As we saw above, if s = ⟨p0 , . . . , pm⟩ , t = ⟨q0 , . . . , qm⟩ ∈ Tm ∩ H and s ≠ t, then
△(s, t) = n. Furthermore, by Lemma 49, we get that p i ↾ β = q i ↾ β for every i ≤
m. In this way, for every m > n there must be rm ∈ Pβ and ẋm , ẏm two Pβ-names
such that Last (Tm ∩ H) = {rm

⌢ẋm , rm
⌢ ẏm}. Since T is an α-fusion tree, then S =

(⟨ẋm⟩ , ⟨ ẏm⟩)m>n is forced to be a 1-fusion sequence. By Lemma 20 there is ȧ a Pβ-
name for a condition in S(U̇α) that is forced to be a lower bound of either ⟨ẋm⟩m>n or
⟨ ẏm⟩m>n (note however, that it could happen that we do not know which possibility
occurs without extending q). Clearly q⌢ ȧ is the condition we were looking for.

Now, we consider the case where β < δ. By the inductive hypothesis, there are
ṙ such that q1 = q⌢ ṙ ∈ Pδ and Ṙ′ a Pδ-name for a branch through T ↾ δ such that
q1 ⊩δ “Ṙ′ ⊆ Ġδ” and q1 ⊩δ“Ṙ′ ↾ β = Ṙ.” Now, by the previous case, there are ṙ1 such
that q2 = q⌢1 ṙ1 ∈ Pα and Ṙ′′ a Pα-name for a branch through T such that q2 ⊩α “Ṙ′′ ⊆
Ġα” and q2 ⊩α “Ṙ′′ ↾ δ = Ṙ′.” This clearly finishes the proof of this case.

Assume α is a limit ordinal and let ⟨δn⟩n∈ω ⊆ M be an increasing sequence such
that ⋃

n∈ω
δn = ⋃(M ∩ α) , we also assume β = δ0 and Fn ⊆ δn+1 . We do the following:

1. By the inductive hypothesis, we can find q1 ∈ Pδ1 and Ṙ1 with the following
properties:
(a) Ṙ1 is a Pδ1 -name for a branch of the tree T ↾ δ1 .
(b) q1 ↾ δ0 = q0 (where q0 = q).
(c) q1 ⊩“Ṙ1 ⊆ Ġδ1 ” and q1 ⊩“Ṙ1 ↾ δ0 = Ṙ0” (where Ṙ0 = Ṙ).

2. By the inductive hypothesis, we can find q2 ∈ Pδ2 and Ṙ2 with the following
properties:
(a) Ṙ2 is a Pδ2 -name for a branch of the tree T ↾ δ2 .
(b) q2 ↾ δ1 = q1 .
(c) q2 ⊩“Ṙ2 ⊆ Ġδ2 ” and q2 ⊩“Ṙ2 ↾ δ1 = Ṙ1.”

⋮ ⋮
n+1. By the inductive hypothesis, we can find qn+1 ∈ Pδn+1 and Ṙn+1 with the following

properties:
(a) Ṙn+1 is a Pδn+1 -name for a branch of the tree T ↾ δn+1 .
(b) qn+1 ↾ δn = qn .
(c) qn+1 ⊩“Ṙn+1 ⊆ Ġδn ” and qn+1 ⊩“Ṙn+1 ↾ δn = Ṙn .”

For every n ∈ ω, let Ṙn = ⟨ṗn
i ⟩i∈ω . By construction, we have that ṗn+1

i ↾ δn and ṗn
i

are forced to be equal and qn+1 ↾ δn = qn . Define q = ⋃
i∈ω

q i and ṗ i be a name for ⋃
n∈ω

ṗn
i .

Let Ṙ′ = ⟨ṗ i⟩i∈ω , we claim that q and Ṙ′ have the desired properties. It is clear that
q ↾ β = q and q ⊩“Ṙ′ ↾ β = Ṙ.”
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We will now prove that Ṙ′ is forced by q to be a branch through T . For every
m ∈ ω, let Ṙ′m = ⟨ṗ0 , . . . , ṗm⟩ . We need to prove that q ⊩“Ṙ′m ∈ T” for every m ∈ ω.
Assume this is not the case. In this way, we can find m ∈ ω such that q ⊩“Ṙ′m ∈ T”
but q /⊩“Ṙ′m+1 ∈ T” (recall point 1 in Definition 48). In this way, we can find q1 ≤ q
such that q1 ⊩“ṗm+1 ∉ sucT(Ṙ′m).” Let r ≤ q1 and s ∈ T such that r ⊩“s = Ṙ′m .” Since
sucT(s) is finite (has at most two elements in fact), we can find r1 ≤ r and ξ ∈ M ∩ α
such that r1 ⊩“ṗm ↾ ξ ≠ x ↾ ξ” for every x ∈ sucT(s). Pick n ∈ ω such that ξ < δn . In
this way, we get that r1 ↾ δn forces that Ṙ′ is not a branch trough T ↾ δn , but this is a
contradiction.

It remains to prove that q ⊩“Ṙ′ ⊆ Ġα .” We need to prove that if i ∈ ω, then q ⊩“ṗ i ∈
Ġα .” Recall that q = ⋃

i∈ω
q i and ṗ i be a name for ⋃

n∈ω
ṗn

i . By construction, we have that

qn ⊩“ṗn
i ∈ Ġδn ” for every n ∈ ω, so we conclude that q ⊩“ṗ i ∈ Ġα .” ∎

The next task is to be able to extend finite fusion trees. We will need a preliminary
lemma.

Lemma 64 Let p ∈ Pβ+1 , F ∈ [β + 1]<ω , η ∶ F �→ ω and D ⊆ Pβ+1 be (F , η)∗-open
dense below p. The set

L = {r ∈ Pβ ∣ ∃ẋ (r⌢ẋ ≤∗F ,η p ∧ r⌢ẋ ∈ D)}

is (F′ , η′)∗-open dense below p ↾ β (where F′ = F ∩ β and η′ = η ↾ F).

Proof We first show that L is (F′ , η′)∗-open below p ↾ β. Let q ∈ L and r ≤∗F′ ,η′ q.
Since q ∈ L, there is ẋ such that q⌢ẋ ≤∗F ,η p and q⌢ẋ ∈ D. It follows that r⌢ẋ ≤∗F ,η q⌢ẋ ,
so r⌢ẋ ≤∗F ,η p. Since D is (F , η)∗-open and q⌢ẋ ∈ D, we get that r⌢ẋ ∈ D which implies
that r ∈ L.

We will now prove that L is (F′ , η′)∗-dense below p ↾ β. Let q ≤∗F′ ,η′ p ↾ β, define
q1 = q⌢p(β) and note that q1 ≤∗F ,η p. Since D is (F , η)∗-dense, there is q2 ≤∗F ,η q1 such
that q2 ∈ D. Let r = q2 ↾ β. It follows that r ∈ L since q2 = r⌢q2(β). ∎

We conclude with the following key result, which will allow us to keep extending
finite trees.

Lemma 65 Let α ∈ M ⪯H(κ), L = {(Fn , ηn) ∣ n ∈ ω} suitable for(M , α) and T an α-
finite fusion tree of height n. For every s = ⟨p0 , . . . , pn⟩ ∈ T let Ds ∈ M be an (Fn , ηn)∗-
open dense set below pn . Then there is T̃ with the following properties:
1. T̃ is a α-finite fusion tree of height n + 1.
2. T̃ is an end-extention of T .
3. If s = ⟨p0 , . . . , pn⟩ ∈ T , then sucT̃(s) ⊆ Ds .

Proof We prove it by induction on α. The case α = 1 follows by the argument of
Lemma 17. Now assume α = β + 1 and the lemma holds for β, let S = T ↾ β. For
every m ∈ ω, let F′m = Fm ∩ β and η′m = ηm ↾ F′m . For the proof in this case, given
s = ⟨p0 , . . . , pn⟩ ∈ T , we will denote s′ = ⟨p0 ↾ β, . . . , pn ↾ β⟩ . There are several cases
to consider:

Case 66 β ∉ Fn+1 .
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In this case, we have that F′n+1 = Fn+1 and F′n = Fn . This is the easiest case since “β
has not come into play yet.” We provide the details.

Let s = ⟨ps
0 , . . . , ps

n⟩ ∈ T . Define

Ls = {q ∈ Pβ ∣ ∃ẋ (q⌢ẋ ≤∗Fn ,ηn
ps

n ∧ q⌢ẋ ∈ Ds)} .

By Lemma 64, we know that Ls is (Fn , ηn)∗-open dense below ps
n ↾ β.

We now claim that if s = ⟨p0 , . . . , pn⟩ , t = ⟨q0 , . . . , qn⟩ ∈ T and s ≠ t, then s′ =
⟨p0 ↾ β, . . . , pn ↾ β⟩ and t′ = ⟨q0 ↾ β, . . . , qn ↾ β⟩ are different. Let m = △(s, t) , we
know that pm ⊥ qm and since β ∉ Fm+1 , it follows that pm ↾ β ⊥ qm ↾ β (and in
particular, they are different).

By the remark above, for every z = ⟨p′0 , . . . , p′n⟩ ∈ S , there is an unique s =
⟨p0 , . . . , pn⟩ ∈ T such that s′ = z. We also know that Ls is (Fn , ηn)∗-open dense below
p′n . By the inductive hypothesis, there is a fusion tree T̂ such that the following holds:
1. T̂ is a β-finite fusion tree of height n + 1.
2. T̂ is an end-extention of S .
3. If s ∈ Tn , then sucT̂ (s′) ⊆ Ls .

We now define the tree T̃ as follows:
1. T̃ is a tree of height n + 1.
2. T̃ is an end-extention of T .

Let s = ⟨p0 , . . . , pn⟩ ∈ T .
3. We know that d T̂

s′ and w T̂
s′ are elements of Ls . This means that there are ẋs and

ẏs such that d T̂⌢
s′ ẋs and w T̂⌢

s′ ẏs are ≤∗Fn ,ηn
-extensions of pn and are in Ds . Define

dT
s = d T̂⌢

s′ ẋs and wT
s = w T̂⌢

s′ ẏs (in case that Fn = Fn+1 we have that F′n = F′n+1 . The
definition of fusion tree demands that d T̂

s′ = w T̂
s′ . We take ẋs = ẏs so that we get

dT
s = wT

s ).
We need to prove that T̃ is an α-finite fusion tree, but this is easy since T̂ is a β-finite

fusion tree and β ∉ Fn+1. This finishes the proof for this case.

Case 67 β ∈ Fn+1/Fn .

In this case, we have that F′n+1 = Fn and F′n = Fn .
As in the previous case, for every s = ⟨ps

0 , . . . , ps
n⟩ ∈ T , define Ls = {q ∈ Pβ ∣

∃ẋ (q⌢ẋ ≤∗Fn ,ηn
ps

n ∧ q⌢ẋ ∈ Ds)}. Again, by Lemma 64, we already know that this set
is (F′n , η′n)

∗-open dense below ps
n ↾ β. Now, note that if q ∈ Ls and ẋ is such that

q⌢ẋ ≤∗Fn ,ηn
ps

n and q⌢ẋ ∈ Ds , we can now take ȧand ḃ be two Pβ-names for conditions
on S(U̇β) such that q forces that they are incompatible extensions of ẋ, yet E ȧ and Eḃ .

In this way, if q ∈ Ls , we can find ȧ and ḃ with the following properties:
1. q⌢ ȧ ≤∗Fn ,ηn

ps
n and q⌢ḃ ≤∗Fn ,ηn

ps
n .

2. q⌢ ȧ, q⌢ḃ ∈ Ds .
3. q ⊩“ȧ ⊥ ḃ ∧ E ȧ = Eḃ .”

The second point follows because Ds is (Fn , ηn)∗-open below ps
n .

In the same way as in the previous case, we have that if s = ⟨ps
0 , . . . , ps

n⟩,
t = ⟨pt

0 , . . . , pt
n⟩ ∈ T and s ≠ t, then s′ ≠ t′. Once again, for every z ∈ Sn , there is a

https://doi.org/10.4153/S0008414X21000614 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000614


The ultrafilter number and hm 517

unique s ∈ Tn such that s′ = z. We also know that Ls is (Fn , ηn)∗-open dense below
ps

n ↾ β. By the inductive hypothesis, there is a tree T̂ such that the following holds:
1. T̂ is a β-finite fusion tree of height n + 1.
2. T̂ is an end-extention of S .
3. If s = ⟨ps

0 , . . . , ps
n⟩ ∈ Tn , then d T̂

s′ = w T̂
s′ and it belongs to Ls (recall that F′n = F′n+1 =

Fn holds in this case).
Let s = ⟨ps

0 , . . . , ps
n⟩ ∈ T , we know that s′ ∈ T̂ and sucT̂ (s′) has only one element.

Since d T̂
s′ ∈ Ls , by the above remark, we know that there are ȧs and ḃs such that the

following holds:
1. d T̂

s′
⌢ ȧs ≤∗Fn ,ηn

ps
n and d T̂

s′
⌢ḃs ≤∗Fn ,ηn

ps
n .

2. d T̂
s′
⌢ ȧs , d T̂

s′
⌢ḃs ∈ Ds .

3. d T̂
s′ ⊩“ȧs ⊥ ḃs ∧ E ȧs = Eḃs

.”
Recall that Sn is an antichain (see Lemma 49). In this way, using Lemma 45, we can

find two Pβ-names ėT
n and u̇T

n such that if s = ⟨ps
0 , . . . , ps

n⟩ ∈ T , then ps
n ↾ β ⊩“ėT

n =
ȧs ∧ u̇T

n = ḃs .” Define dT
s = d T̂

s′
⌢ ėT

n and wT
s = d T̂

s′
⌢u̇T

n (which is the same as w T̂
s′
⌢u̇T

n ).
Define the tree T̃ as follows:
1. T̃ is a tree of height n + 1.
2. T̃ is an end-extention of T .
3. If s = ⟨p0 , . . . , pn⟩ ∈ T , then sucT̃(s) = {dT

s , wT
s }.

It is easy to see that T̃ has the desired properties. This finishes the proof for this
case.

Case 68 β ∈ Fn .

In this case, we have that F′n+1 = Fn+1/ {β} and F′n = Fn/ {β} .
Let s = ⟨ps

0 , . . . , ps
n⟩ ∈ T and note that there is a unique t = ⟨pt

0 , . . . , pt
n⟩ ∈ T such

that s′ = t′ and s ≠ t (see Lemma 60). Let z = s′ = t′ (which is a node in S). Define Lz
as the set of all q ∈ Pβ such that there are ẋ , ẏ with the following properties:
1. q ≤∗F′n ,η′n ps

n ↾ β (recall that ps
n ↾ β = pt

n ↾ β).
2. q⌢ẋ ≤∗Fn ,ηn

ps
n and q⌢ ẏ ≤∗Fn ,ηn

pt
n .

3. q⌢ẋ ∈ Ds and q⌢ ẏ ∈ Dt .
4. q ⊩ “⟨ps

n(β), pt
n(β), ẋ , ẏ⟩ is an ηn(β)-nice sequence′′.

We claim that Lz is (F′n , η′n)
∗-open dense below ps

n ↾ β. It is easy to see that Lz
is (F′n , η′n)

∗-open below ps
n ↾ β. The proof that it is also dense is more elaborate, we

basically follow the argument of Lemma 17. It will be convenient for the reader to
review the proof of this lemma before continuing.

Let r ≤∗F′n ,η′n ps
n ↾ β, we need to find an ≤∗F′n ,η′n -extension that is in Lz . Since r⌢ps

n(β)
is an ≤∗Fn ,ηn

-extension of ps
n and Ds is ≤∗Fn ,ηn

-dense below it, we can find r1 ∈ Pβ and ẋ
a Pβ -name for an element of S(U̇α) such that r⌢1 ẋ ≤∗Fn ,ηn

ps
n and r⌢1 ẋ ∈ Ds . Let U̇ be

the name for the following set:

(dom (ps
n (β)) /dom (ẋ)) ∪ ([ȧηn(β)]ẋ/[ȧηn(β)]ps

n(β)) .

Now, let ẏ be the Pβ-name for the extension of pt
n(β) obtained by adding U̇ to the

ηn(β)-class of the partition of pt
n(β). Note that r⌢1 ẏ ≤∗Fn ,ηn

pt
n . Using the density of
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Dt , we can now find ẏ1 and q such that q⌢ ẏ1 ≤∗Fn ,ηn
r⌢1 ẏ and q⌢ ẏ1 ∈ Dt . Let U̇1 be the

name for the following set:

(dom( ẏ)/dom ( ẏ1)) ∪ ([ȧηn(β)] ẏ1/[ȧηn(β)] ẏ) .

Now, let ẋ1 be the Pβ-name for the extension of ẋ obtained by adding U̇1 to the
ηn(β)-class of the partition of ẋ . It follows that q has the desired properties (note that
q⌢ẋ2 ∈ Ds since q⌢ẋ2 ≤∗Fn ,ηn

r⌢1 ẋ).
For every z ∈ Sn we have the set Lz . By the inductive hypothesis, there is a tree T̂

such that the following holds:

1. T̂ is a β-finite fusion tree of height n + 1.
2. T̂ is an end-extention of T ′ .
3. If z ∈ T̂n , then sucT̂ (z) ⊆ Lz .

We now define the tree T̃ as follows:

1. T̃ is a tree of height n + 1.
2. T̃ is an end-extention of T .

Let s = ⟨ps
0 , . . . , ps

n⟩ , t = ⟨pt
0 , . . . , pt

n⟩ ∈ T with z = s′ = t′ .
3. In case Fn = Fn+1, we have that F′n = F′n+1. Since d T̂

z ∈ sucT̂ (z) ⊆ Lz , we know that
there are ẋ and ẏ with the following properties:
(a) d T̂

z ≤∗F′n ,η′n ps
n ↾ β.

(b) d T̂⌢
z ẋ ≤∗Fn ,ηn

ps
n and d T̂⌢

z ẏ ≤∗Fn ,ηn
pt

n .
(c) d T̂⌢

z ẋ ∈ Ds and d T̂⌢
z ẏ ∈ Dt .

(d) d T̂
z ⊩ “⟨ps

n(β), pt
n(β), ẋ , ẏ⟩ is an ηn(β)-nice sequence.”

Define dT
s = wT

s = d T̂
z
⌢ẋ and dT

t = wT
t = d T̂

z
⌢ ẏ.

4. In case Fn ≠ Fn+1 , first note that F′n ≠ F′n+1 as well (if γ ∈ Fn+1/Fn , then γ ≠ β so
γ ∈ F′n+1/F′n). Since sucT̂ (z) ⊆ Lz , we know there are ẋ0 , ẏ0 , ẋ1, and ẏ1 such that
the following holds:
(a) d T̂

z , w T̂
z ≤∗F′n ,η′n ps

n ↾ β.
(b) d T̂

z
⌢ẋ0 , w T̂

z
⌢ẋ1 ≤∗Fn ,ηn

ps
n and d T̂

z
⌢ ẏ0 , w T̂

z
⌢ ẏ1 ≤∗Fn ,ηn

pt
n .

(c) d T̂
z
⌢ẋ0 ∈ Ds , d T̂

z
⌢ ẏ0 ∈ Dt and w T̂

z
⌢ẋ1 ∈ Ds , w T̂

z
⌢ ẏ1 ∈ Dt .

(d) d T̂
z ⊩ “⟨ps

n(β), pt
n(β), ẋ0 , ẏ0⟩ is an ηn(β)-nice sequence” and w T̂

z ⊩
“⟨ps

n(β), pt
n(β), ẋ1 , ẏ1⟩ is an ηn(β)-nice sequence.”

We now define dT
s = d T̂⌢

z ẋ0 , wT
s = w T̂

z
⌢ẋ1 and dT

t = d T̂⌢
z ẏ0 , wT

t = w T̂
z
⌢ ẏ1 .

We need to prove that T̃ is an α-finite fusion tree. Points 1–3 of Definition 48
hold by construction, while point 4 holds since T̂ is a β-fusion tree. We now prove
that point 5 also holds. Let s = ⟨ps

0 , . . . , ps
n⟩ , t = ⟨pt

0 , . . . , pt
n⟩ ∈ T , m = △(s, t) , γ ∈

Fm+1/Fm and assume that ps
n ↾ γ = pt

n ↾ γ holds. In case γ = β (so m = n), we get the
desired conclusion by construction, if γ < β, we get the conclusion because T̂ is a β-
fusion tree. This finishes the proof for this case.
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We conclude that the result is true for successor ordinals.
Finally, assume α is a limit ordinal and the conclusion holds for every ordinal

less than α. Choose β ∈ M ∩ α such that Fn+1 ⊆ β. For the rest of the proof, if t =
⟨q0 , . . . , qn⟩ ∈ T , we will denote t′ = ⟨q0 ↾ β, . . . , qn ↾ β⟩ . By the same arguments as
before, it is easy to prove that if s = ⟨p0 , . . . , pn⟩ , t = ⟨q0 , . . . , qn⟩ ∈ T and s ≠ t, then
s′ ≠ t′ .

For every s = ⟨p0 , . . . , pn⟩ ∈ T , define the set

Ls = {q ∈ Pβ ∣ ∃ẋ (q⌢ẋ ≤∗Fn ,ηn
pn ∧ q⌢ẋ ∈ Ds)} .

With the same argument as Lemma 64, we can prove that Ls is (Fn , ηn)∗-open and
(Fn , ηn)∗-dense below pn ↾ β. Let S = T ↾ β.

For every s′ ∈ Sn , we have Ls . By the inductive hypothesis, there is a tree T̂ such
that the following holds:
1. T̂ is a β-finite fusion tree of height n + 1.
2. T̂ is an end-extention of S .
3. If s′ ∈ T̂n , then sucT̂ (s′) ⊆ Ls .

We now define the tree T̃ as follows:
1. T̃ is a tree of height n + 1.
2. T̃ is an end-extention of T .

Let s = ⟨p0 , . . . , pn⟩ ∈ T .
3. Case Fn = Fn+1 . Since d T̂

s ∈ Ls , there is ẋ such that d T̂
s
⌢ẋ ≤∗Fn ,ηn

pn and d T̂
s
⌢ẋ ∈ Ds .

Define dT
s = d T̂

s
⌢ẋ .

4. Case Fn ≠ Fn+1 . We know there are ẋ and ẏ such that d T̂
s
⌢ẋ ≤∗Fn ,ηn

pn with d T̂
s

⌢ẋ ∈ Ds and also w T̂
s
⌢ ẏ ≤∗Fn ,ηn

pn with w T̂
s
⌢ ẏ ∈ Ds . Define dT

s = d T̂
s
⌢ẋ and wT

s =
w T̂

s
⌢ ẏ.

We need to prove that T̃ is a α-finite fusion tree, but this is easy since T̂ is a β-finite
fusion tree and Fn+1 ⊆ β (so everything interesting happens before β). This finishes
the proof for this case and the proof overall. ∎

5 Preserving cmin-covering at successor steps

With the tools developed in the last section, we can finally start the proof that
the iteration of the Shelah’s forcing preserves cmin-covering. The proof will be by
induction. The base case has already been done, we will do the successor step in this
section and the limit step in the next one. This proof takes inspiration in the result by
Geschke that the iteration of the Miller lite forcing preserves cmin-covering (see [7]).
For this section, assume α = β + 1 and ẋ is the name of a real that was not added at the
β-step.

Definition 69 Let T and S be two finite subtrees of 2<ω and i < 2. We say that
cmin (T , S) = i if for every maximal node t of T and every maximal node s of S the
following holds:
1. t and s are incompatible.
2. cmin (t, s) = i .
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Note that if cmin (T , S) = i and T and S are end-extentions of T and S respectively,
then cmin (T , S) = i holds as well. Recall that P is a partial order, ẏ is a P-name for an
element in 2ω and p ∈ P, we defined ẏ [p] = ⋃{t ∣ p ⊩ “t ⊆ ẏ′′} . Also remember that
if p ∈ S(U), we defined Sp ( ẏ) = ⋃{ ẏ [p[h]] ∣ h ∈ 2<ω} .

Definition 70 Let q ∈ Pβ and ṗ a Pβ-name for a condition of S(U̇β) and n ∈ ω. We
say that q determines ṗ to the n-level if there is a tree T ṗ

n (q) such that q ⊩ “T ṗ
n (q) =

⋃{ẋ[p[h]] ∣ h ∈ 2n+1} .”

The name above may be a little misleading, since q is not really determining p, but
the tree of possibilities of ẋ to the n-branching level. However, we prefer this name
instead of something more descriptive, yet much more notationally complicated (like
“q determines Ṡp(x) ↾ Splitn” or something similar).

By the results of the previous sections, we know that if q ∈ Pβ and ṗ1 is a Pβ-name
for a condition ofS(U̇β), then we can find ṗ2 aPβ-name for a condition ofS(U̇β) such
that q forces that ṗ2 is an extension of ṗ1, ṗ2 is ω-separative and S ṗ2 (ẋ) is forced to
be a monochromatic Sacks tree (although we might not know of which color without
extending q first).

Definition 71 Let q ∈ Pβ and ṗ a Pβ-name for a condition of S(U̇β). Let F ∈ [β]<ω

and η ∶ F �→ ω. We say (q, ṗ) is (F , η, n, i)-faithful if the following holds:
1. q forces that ṗ is ω-separative and S ṗ(ẋ) is an i-monochromatic Sacks tree.
2. If σ ∈ ∏

γ∈F
2η(γ) then q ∗ σ determines ṗ to the n-level.

3. If σ , σ ′ ∈ ∏
γ∈F

2η(γ) and σ ≠ σ ′ then cmin(T ṗ
n (q ∗ σ) , T ṗ

n (q ∗ σ ′)) = i (where

T ṗ
n (q ∗ σ) and T ṗ

n (q ∗ σ ′) are as in Definition 70).

It is important to remark the following:

Lemma 72 Let F ∈ [β]<ω , η ∶ F �→ ω and (q, ṗ) be (F , η, n, i)-faithful. If r ≤∗F ,η q,
then (r, ṗ) is (F , η, n, i)-faithful.

We will now prove the next lemma:

Lemma 73 Let (q, ṗ) be (F , η, n + 1, i)-faithful. There are ṗ0 , ṗ1 with the following
properties:
1. (q, ṗ0) and (q, ṗ1) are (F , η, n, i)-faithful.
2. q ⊩“ṗ0 , ṗ1 ≤∗∗n ṗ.”
3. cmin(T ṗ0

n (q ∗ σ) , T ṗ1

n (q ∗ σ)) = i whenever σ ∈ ∏
γ∈F

2η(γ).

Proof Assume (q, ṗ) is (F , η, n + 1, i)-faithful. Let ṗ0 be (the name of) the condition
obtained by merging [a ṗ(n)]p with [a ṗ (n + 1)]p and a ṗ (n + 1) ∈ Lovp(β) (a ṗ(n))
and let ṗ1 be (the name of) the condition obtained by merging [a ṗ(n)]p
with [a ṗ (n + 1)]p and a ṗ (n + 1) ∈ Hatp(β) (a ṗ(n)) . It follows that (q, ṗ0) and
(q, ṗ1) are (F , η, n, i)-faithful. It is also easy to see that if σ ∈ ∏

γ∈F
2η(γ), then

cmin(T ṗ0

n (q ∗ σ) , T ṗ1

n (q ∗ σ)) = i . ∎
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We will need the following:

Lemma 74 Let (q, ṗ) be (F , η, n, i)-faithful.

1. The set D = {r ≤∗F ,η q ∣ (r, ṗ) is (F , η, n + 1, i)-faithful} is (F , η)∗-open dense
below q.

2. For every m ∈ ω with m > n, the set Dm = {r ≤∗F ,η q ∣ (r, ṗ) is (F , η, m, i)-faithful}
is (F , η)∗-open dense below q.

Proof Obviously the first point implies the second one. It is easy to see that D is
(F , η)∗-open. We will now prove that D is (F , η)∗-dense. Let q1 ≤∗F ,η q and fix an
enumeration ∏

γ∈F
2η(γ) = {σ j ∣ j < k} . We can recursively build conditions q0

1 , . . . , qk+1
1

with the following properties:

1. ⟨q0
1 , . . . , qk+1

1 ⟩ is an ≤(F ,η)-decreasing sequence.
2. q0

1 = q1 .
3. q i+1

1 ∗ σ j determines ⋃{ẋ (p[h]) ∣ h ∈ 2n+2} .

We claim that r = qk+1
1 is the condition we are looking for. In order to prove

this, note that if j1 ≠ j2 , then cmin(T ṗ
n+1 (qk+1

1 ∗ σ j1) , T ṗ
n+1 (qk+1

1 ∗ σ j2)) = i because
T ṗ

n+1 (qk+1
1 ∗ σ j1) and T ṗ

n+1 (qk+1
1 ∗ σ j2) are end-extentions of trees that already have

that property. ∎

The following lemma is easy and follows from the definitions:

Lemma 75 Let (q, ṗ) be (F , η, n, i)-faithful and γ ∉ F . Define F′ = F ∪ {γ} and η′ =
η ∪ {(γ, 0)} . The condition (q, ṗ) is (F′ , η′ , n, i)-faithful.

We will need one more lemma:

Lemma 76 Assume (q, ṗ) is (F , η, n + 1, i)-faithful. Let δ ∈ F and define η′ ∶ F �→ ω
where η′ (ξ) = η (ξ) if ξ ≠ δ and η′ (δ) = η (δ) + 1. There is ṗ# such that q ⊩ “ṗ# ≤∗∗n
ṗ” and (q, ṗ#) is (F , η′ , n, i)-faithful.

Proof Let ṗ0 and ṗ1 be as in Lemma 73. Now, define a S (Uβ)-name ṗ# such that if
σ ∈ ∏

γ∈F
2η′(γ) then q ∗ σ ⊩ “ṗ# = ṗσ(δ)(η(γ))′′ (In other words, if the last digit of σ (δ)

is k, then q ∗ σ ⊩“ṗ# = ṗk”). It follows that (q, ṗ#) is (F , η′ , n, i)-faithful. ∎

We can now prove the most important result on this section:

Proposition 77 Let α = β + 1 and assume ẋ is a Pα-name for a real that was not added
by Pβ . If q′ ∈ Pα , then there are q ≤ q′ and S ∈ V a cmin-monochromatic tree such that
q ⊩ “ẋ ∈ [S] .”

Proof We may assume that there are q ∈ Pβ and ṗ a Pβ-name for a condition of
S(U̇β) such that q forces that ṗ is ω -separative, S ṗ (ẋ) is an i-monochromatic Sacks
tree (for some i < 2) and q′ = q⌢ ṗ. Let M be a countable elementary submodel ofH(κ)
(for a big large enough regular cardinal κ) such that α, q, ṗ, U̇β , ẋ ∈ M .
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For every l < 3, define A l = {n ∣ n =3 l} (where n =3 l means that n is equal to l
mod 3). We now find L = {(Fn , ηn) ∣ n ∈ ω} suitable for (M , β) with the following
extra properties:
1. F0 = ∅ and η0 = ∅.
2. Let n ∈ ω and assume Fn , ηn are already defined, we will now define Fn+1 and ηn+1 .

(a) Case n ∈ A0 .
Let Fn+1 = Fn and ηn+1 = ηn .

(b) Case n ∈ A1 .
Let Fn+1 = Fn and there is a unique ξ ∈ Fn such ηn+1 (ξ) = ηn (ξ) + 1 and
ηn+1(γ) = ηn(γ) for every other γ ∈ Fn .

(c) Case n ∈ A2 .
Fn+1/Fn has size at most 1, ηn+1 ↾ Fn = ηn ↾ Fn and if γ ∈ Fn+1/Fn , then
ηn+1(γ) = 0.

Define a tree Y ⊆ 2<ω as follows:
1. ∅ ∈ Y .
2. If s ∈ Yn and Fn+1 = Fn , then s⌢0 ∈ Yn+1 .
3. If s ∈ Yn and Fn+1 ≠ Fn , then s⌢0, s⌢1 ∈ Yn+1 .

It follows that if s ∈ Y is a splitting node, then ∣s∣ ∈ A2 (but not every node whose
height is in A2 must be a splitting node).

We will now recursively build a β-fusion tree T = {qs ∣ s ∈ Y} ⊆ M , {kn ∣ n ∈ ω} ⊆
ω and {ṗs ∣ s ∈ Y} ⊆ M with the following properties6:
1. k0 = 0.
2. q∅ ≤ q and q∅ ⊩“ṗ∅ ≤ ṗ.”
3. if s ∈ Yn , then (qs , ṗs) is (Fn , ηn , kn , i)-faithful. Define K (qs) = ⋃{T ṗs

n (qs ∗ σ) ∣
σ ∈ ∏

γ∈Fn

2ηn(γ)}.

4. If s ∈ Yn and j ∈ sucY(s), then qs⌢ j ≤∗Fn ,ηn
qs and qs⌢ j ⊩ “ ṗs⌢ j ≤∗∗kn

ṗ′′s .
5. If s ∈ Y and j ∈ sucY(s), then K (qs⌢ j) is an end-extension of K (qs) .
6. If s ∈ Y and s⌢0, s⌢1 ∈ Y , then K (qs⌢0) and K (qs⌢1) are two end-extensions of

K (qs) and cmin (K (qs⌢0) , K (qs⌢1)) = i .
7. Let n ∈ ω and assume {qt ∣ t ∈ Yn} , {k l ∣ l ≤ n}, and {ṗt ∣ t ∈ Yn} have already

been constructed. We will now build the items for the nodes in Yn+1 . Let s ∈ Yn , we
will define qs⌢ l , ks⌢ l and ṗs⌢ l for l ∈ sucY(s). We are assuming that {qt ∣ t ∈ Yn} is
a (finite) β-fusion tree and (qs , ṗs) is (Fn , ηn , kn , i)-faithful.
(a) Case n ∈ A0 (recall that Fn+1 = Fn , ηn+1 = ηn and sucY(s) = {0}).

Let ṗs⌢0 = ṗs and kn+1 = kn + 3. We choose qs⌢0 ≤∗Fn ,ηn
qs such that (qs⌢0 , ṗs⌢0)

is (Fn , ηn , kn + 3, i)-faithful. This is possible by Lemmas 65 and 74.
(b) Case n ∈ A1 (recall that Fn+1 = Fn , ηn+1 increases by one in just one point and

sucY(s) = {0}).
Let qs⌢0 = qs , kn+1 = kn − 1 and we find ṗs⌢0 such that (qs , ṗs⌢0) is
(Fn , ηn+1 , kn − 1, i)-faithful and qs ⊩“ṗs⌢0 ≤∗∗kn+1

ṗs .” This is possible by
Lemma 76.

6In this proof, we will identify the nodes in a fusion tree with the value of its last component. As we
mentioned earlier, this is possible by Lemma 49.

https://doi.org/10.4153/S0008414X21000614 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000614


The ultrafilter number and hm 523

(c) Case n ∈ A2 and Fn+1 = Fn (recall that ηn+1 ↾ Fn = ηn and sucY(s) = {0}).
Let qs⌢0 = qs , kn+1 = kn and ṗs⌢0 = ṗs .

(d) Case n ∈ A2 and Fn+1 ≠ Fn (recall that ∣Fn+1∣ = ∣Fn ∣ + 1, ηn+1 takes value 0 in the
new point and sucY(s) = {0, 1}).
Let kn+1 = kn − 1. We use Lemma 73 to find ṗ0

s , ṗ1
s such that the following

conditions hold:
i. (qs , ṗ0

s ) and (qs , ṗ1
s) are (Fn , ηn , kn − 1, i)-faithful.

ii. qs ⊩“ṗ0
s , ṗ1

s ≤∗∗kn+1
ṗ.”

iii. cmin(T ṗ0
s

n (qs ∗ σ) , T ṗ1
s

n (qs ∗ σ)) = i whenever σ ∈ ∏
γ∈Fn

2ηn(γ).

We now apply Lemma 65 to find {qt⌢ l ∣ t ∈ Yn ∧ l ∈ 2} a β-fusion tree extend-
ing our current tree (in the statement of Lemma 65 we can take Dt = Pβ for
every t ∈ Yn). Let ṗs⌢0 = ṗ0

s and ṗs⌢1 = ṗ1
s .

Now that we have constructed T , it follows by faithfulness that K (qs) is an
i-monochromatic tree for every s ∈ Y . Furthermore, we know that K (qs⌢0) and
K (qs⌢1) are two end-extensions of K (ps) and cmin (K (qs⌢0) , K (qs⌢1)) = i . In this
way, K = ⋃

s∈Y
K(qs) is an i-monochromatic tree, which is an element of V.

By Lemma 62, there is q ∈ Pβ compatible with T and Ṙ a name for a branch
through T such that q forces Ṙ to be contained in the generic filter. In this way
p = Lim ({ṗR↾n ∣ n ∈ ω}) is a name for a condition of S(U̇β) (since it is forced to be
the limit of a ≤∗∗-decreasing sequence). Finally, r = q⌢p is an extension of q⌢ ṗ and
r ⊩ “ẋ ∈ [K] , ” which is what we desired the most. This finishes the construction and
the proof of the successor case. ∎

6 Preserving cmin-covering at limit steps

The last task is to prove that the cmin-covering is preserved at limit steps of the iteration.
For this section, let α be a limit ordinal and ẋ a Pα-name for an element of 2ω that was
not added by any Pβ for β < α (this entails that α has countable cofinality).

Given i < 2, define Wi as the set of all p ∈ Pα such that for every β < α and for every
q ≤ p there are q′ ≤ q and q0 , q1 with the following properties:
1. q0 ↾ β = q1 ↾ β = q′ ↾ β.
2. q0 , q1 ≤ q′ .
3. cmin (ẋ [q0] , ẋ [q1]) = i .

The following is Lemma 30 of [9] (in [9], the lemma is only stated for the iteration
of Sacks forcing, but it is mentioned that it is true for any iteration, see also Lemma
6.11 of [7]).

Lemma 78 [9] Both W0 and W1 are open and W0 ∪W1 is an open dense set.

We will need the following concepts:

Definition 79 Let F ∈ [α]<ω , η ∶ F �→ ω, i < 2, β = max( f ) + 1 and p ∈ Pα .
1. We say p is (F , η, i)-faithful if p ∈ Wi and for every σ , σ ′ ∈ ∏

γ∈F
2η(γ) such that σ ≠ σ ′

then cmin (ẋ [p ∗ σ] , ẋ [p ∗ σ ′]) = i .
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2. We say p is (F , η, i)-splitting at β if p is (F , η, i)-faithful and there are p0 , p1 such
that:
(a) p0 , p1 ≤ p.
(b) p0 ↾ β = p1 ↾ β = p ↾ β.
(c) If σ ∈ ∏

γ∈F
2η(γ), then cmin (ẋ [p0 ∗ σ] , ẋ [p1 ∗ σ]) = i .

In the above case, we say that p0 and p1 witness that p is (F , η, i)-splitting at β. The
following are some simple remarks:

Lemma 80 Let F ∈ [α]<ω , η ∶ F �→ ω, i < 2, and p ∈ Pα .
1. If p ∈ Wi then p is (∅, ∅, i)-faithful.
2. If p is (F , η, i)-faithful and q ≤∗F ,η p, then q is (F , η, i)-faithful.
3. If ξ ∉ F and p is (F , η, i)-faithful then p is (F ∪ {ξ} , η ∪ {(ξ, 0)} , i) -faithful.

It does not seem that the set of all (F , η, i)-splitting conditions is (F , η)∗-open
(below an (F , η, i)-splitting condition). Nevertheless, they are open when we restrict
to an ordinal smaller than α.

Lemma 81 Let F ∈ [α]<ω with β = max( f ) + 1, η ∶ F �→ ω, i < 2 and p ∈ Pα be
(F , η, i)-faithful. The set D ⊆ Pβ of all r ∈ Pβ for which there is r ∈ Pα with the following
properties:
1. r ↾ β = r.
2. r ≤∗F ,η p (so r ≤∗F ,η p ↾ β).
3. r is (F , η, i)-splitting at β.

Is an (F , η)∗-open dense below p ↾ β.

Proof We first prove that D is (F , η)∗-open below p ↾ β. Let r ∈ D and q ∈ Pβ such
that q ≤∗F ,η r. Let r as above and r0 , r1 witness that r is (F , η, i)-splitting at β. Define

1. q = q⌢r ↾ [β, α).
2. q0 = q⌢r0 ↾ [β, α).
3. q1 = q⌢r1 ↾ [β, α).

Note that q ≤∗F ,η r as well as q0 ≤∗F ,η r0 and q1 ≤∗F ,η r1 . Since q ≤∗F ,η r it follows that
q is (F , η, i)-faithful. It is easy to see that q0 , q1 witness that q is (F , η, i)-splitting
at β.

We will now prove that D is (F , η)∗-dense below p ↾ β. Take an enumeration
∏
γ∈F

2η(γ) = {σ j ∣ j ≤ k} . We will recursively construct r j , q j , q0
j , q1

j for j ≤ k such that

the following conditions hold:
1. p = r0 .
2. r j+1 ≤F ,η r j for j + 1 ≤ k.
3. q j ≤ r j ∗ σ j .
4. q0

j , q1
j ≤ q j .

5. q0
j ↾ β = q1

j ↾ β = q j ↾ β.
6. cmin(ẋ[q0

j ], ẋ[q1
j]) = i .

7. r j+1 ∗ σ j = q j for j + 1 ≤ j.
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The construction is as follows: we start with p = r0 . Since r0 ∗ σ0 ≤ p and p ∈
Wi , there is q0 ≤ r0 ∗ σ0 and q0

0 , q1
0 ≤ q0 such that q0

0 ↾ β = q1
0 ↾ β = q0 ↾ β and

cmin(ẋ[q0
0], ẋ[q1

0]) = i . Now, assume we are at step j, we will define the items at step
j + 1. We first find r j+1 such that r j+1 ≤F ,η r j and r j+1 ∗ σ j = q j . Since r j+1 ∗ σ j+1 ≤ r j+1

and r j+1 ∈ Wi , we know that there is q j+1 ≤ r j+1 ∗ σ j+1 and q0
j+1 , q1

j+1 ≤ q j+1 such that
q0

j+1 ↾ β = q1
j+1 ↾ β = q j+1 ↾ β and cmin(ẋ[q0

j+1], ẋ[q1
j+1]) = i .

Now, let q such that q ≤F ,η rk and q ∗ σk = qk . We claim that q ∗ σ j ≤ q j for every
j ≤ k. The statement is clear for j = k. Given j < k, we have that q ≤F ,η r j+1 , so q ∗ σ j ≤
r j+1 ∗ σ j = q j and we are done.

By the definition by cases lemma (Lemma 45), we can find ȧ, ḃ two Pβ-names such
that if j ≤ k, then the following holds:
1. q ∗ σ j ⊩“ȧ = q0

j ↾ [δ, α).”
2. q ∗ σ j ⊩“ḃ = q1

j ↾ [δ, α).”
We now define p = (q ↾ β)⌢ p ↾ [β, α). We claim that p is (F , η, i)-splitting at β.

Let p0 = (q ↾ β) ⌢ ȧ and p1 = (q ↾ β) ⌢ḃ, we will show that p0 and p1 have the desired
properties.

It is clear that p0 , p1 ≤ p, and p0 ↾ β = p1 ↾ β = p ↾ β. Now, let σ ∈ ∏
γ∈F

2η(γ), we

need to prove that cmin (ẋ [p0 ∗ σ] , ẋ [p1 ∗ σ]) = i . Let j ≤ k such that σ = σ j . Since
q ∗ σ j ≤ q j , we get that (p0 ∗ σ j) ↾ β ≤ q j ↾ β = q0

j ↾ β and (p1 ∗ σ j) ↾ β ≤ q j ↾ β =
q1

j ↾ β. It follows by the definition of ȧ and ḃ that p0 ∗ σ j ≤ q0
j and p1 ∗ σ j ≤ q1

j . Since
cmin(ẋ[q0

j ], ẋ[q1
j]) = i , we get that cmin (ẋ [p0 ∗ σ] , ẋ [p1 ∗ σ]) = i . ∎

We will now prove the following:

Lemma 82 Let F ∈ [α]<ω with β = max( f ) + 1, η ∶ F �→ ω, i < 2 and p ∈ Pα be
(F , η, i)-splitting at β. Pick ξ ∈ F and define η′ ∶ F �→ ω where η′ (ξ) = η (ξ) + 1 and
η′(γ) = η(γ) whenever γ ≠ ξ. There is r ∈ Pα with the following properties:
1. r ↾ β = p ↾ β.
2. r is (F , η′ , i)-faithful.

Proof We know that p is (F , η, i)-splitting at β. Let p0 and p1 witness that p is
(F , η, i)-splitting at β. For every σ ∈ ∏

γ∈F
2η(γ) and for each j < 2 let σ j ∈ ∏

γ∈F
2η′(γ) such

that σ j(β) = σ(β)⌢ j and σ j(γ) = σ(γ) for every γ ≠ β. Let ȧ be a Pβ-name such that
(p ∗ σ j) ↾ β ⊩ “ȧ = p j ↾ [β, α)” for every σ ∈ ∏

γ∈F
2η(γ) and for each j < 2 (such name

exists by the definition by cases lemma (Lemma 45)). The condition r = (p ↾ β)⌢ ȧ has
the desired properties. ∎

We can now prove that the cmin-covering is preserved at limit steps:

Proposition 83 Let α be a limit ordinal and assume ẋ is a Pα-name for a real that
was not added by Pβ for every β < α. If p ∈ Pα , then there are q ≤ p and S ∈ V a cmin-
monochromatic tree such that q ⊩ “ẋ ∈ [S] .”

Proof By Lemma 78, we may assume that there is i < 2 such that p ∈ Wi . Let M
be a countable elementary submodel of H(κ) (for a big large enough κ) such that
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α,Pα , p, ẋ ∈ M . Let L = {(Fn , ηn) ∣ n ∈ ω} be suitable for (M , α) with the following
properties:

For every l < 4, define A l = {n ∣ n =4 l} (where n =4 l means that n is equal to l
mod 4). We now find L = {(Fn , ηn) ∣ n ∈ ω} suitable for (M , α) with the following
extra properties:
1. F0 = ∅ and η0 = ∅.
2. Let n ∈ ω and assume Fn and ηn are already defined. We wish to define Fn+1 and

ηn+1 .
(a) Case n ∈ A0 .

Let Fn+1 = Fn and ηn+1 = ηn .
(b) Case n ∈ A1 .

Let Fn+1 = Fn and there is a unique ξ ∈ Fn such that ηn+1 (ξ) = ηn (ξ) + 1 while
ηn+1(γ) = ηn(γ) in case γ ≠ ξ.

(c) Case n ∈ A2 .
Let Fn+1 = Fn and ηn+1 = ηn .

(d) Case n ∈ A3 .
In here, ∣Fn+1∣ = ∣Fn ∣ + 1, ηn+1 ↾ Fn = ηn ↾ Fn and in the new point ηn+1 takes
value 0.

We now recursively define a tree Y ⊆ 2<ω as follows:
1. ∅ ∈ Y .
2. Let s ∈ Yn .

(a) If Fn+1 = Fn , then s⌢0 is the only immediate successor of s in Y .
(b) If Fn+1 ≠ Fn , then s⌢0, s⌢1 ∈ Y .
We now recursively construct an α-fusion tree T = {ps ∣ s ∈ Y} ⊆ Pα ∩ M with the

following properties7:
1. p∅ ≤ p.
2. If s ∈ Yn , then ps is (Fn , ηn , i)-faithful. Define K (ps) = ⋃{ẋ [ps ∗ σ] ∣ σ ∈

∏
γ∈Fn

2ηn(γ)}.

3. If s ∈ Yn and j ∈ sucY(s), then ps⌢ j ≤∗Fn ,ηn
ps .

4. If s ∈ Y and j ∈ sucY(s), then K (ps⌢ j) is an end-extension of K (ps) .
5. If s ∈ Y and s⌢0, s⌢1 ∈ Y , then K (ps⌢0) and K (ps⌢1) are two end-extensions of

K (ps) and cmin (K (ps⌢0) , K (ps⌢1)) = i .
6. Let n ∈ ω and assume {pt ∣ t ∈ Yn}has already been constructed. We will now build

the items for the nodes in Yn+1 . Let s ∈ Yn , we will define ps⌢ l for l ∈ sucY(s). We
are are assuming that {pt ∣ t ∈ Yn} is a (finite) α-fusion tree and ps is (Fn , ηn , i)-
faithful. Let β = max (Fn) + 1.
(a) Case n ∈ A0 (recall that Fn+1 = Fn , ηn+1 = ηn and sucY(s) = {0}).

We want ps⌢0 to be (Fn+1 , ηn+1 , i)-splitting at β. This is possible by Lemmas
65 and 81.

(b) Case n ∈ A1 (recall that Fn+1 = Fn , ηn+1 increases by one in just one point and
sucY(s) = {0}).

7Once again, we will identify the nodes in a fusion tree with the value of its last component. (see
Lemma 49).
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In here, we know that n − 1 ∈ A0 , so by the previous case we know that ps is
(Fn , ηn , i)-splitting at β. We want ps⌢0 such that ps⌢0 ↾ β = ps ↾ β and ps⌢0 is
(Fn+1 , ηn+1 , i)-faithful. This is possible by Lemma 82.

(c) Case n ∈ A2 (recall that Fn+1 = Fn , ηn+1 = ηn and sucY(s) = {0}).
We want ps⌢0 to be (Fn+1 , ηn+1 , i)-splitting at β. This is possible by and
Lemmas 65 and 81 (this point is the same as in the case where n ∈ A0).

(d) Case n ∈ A3 (recall that ∣Fn+1∣ = ∣Fn ∣ + 1, ηn+1 ↾ Fn = ηn ↾ Fn in the new point
ηn+1 takes value 0 and sucY(s) = {0, 1}).
In here, we know that n − 1 ∈ A2 , so by the previous case, we know that ps is
(Fn , ηn , i)-splitting at β. For each s ∈ Yn , choose p0

s and p1
s that witness that

ps is (Fn , ηn , i)-splitting at β.
Let T̃ = {pt ↾ β ∣ t ∈ Y≤n}, which we know is a β-fusion tree. Apply Lemma

65 to find {pt⌢ l ∣ t ∈ Yn ∧ l ∈ 2} a β-fusion tree extending T̃ (in the statement
of Lemma 65, we can take Dt = Pβ for every t ∈ Yn). Define ps⌢0 = p⌢s⌢0 p0

s ↾
[β, α) and ps⌢1 = p⌢s⌢1 p1

s ↾ [β, α).

Using the faithfulness of the conditions, it is easy to see that K (ps) is an i-
monochromatic tree. Furthermore, we know that K (ps⌢0) and K (ps⌢1) are two end-
extensions of K (ps) and cmin (K (ps⌢0) , K (ps⌢1)) = i . In this way, K = ⋃

s∈Y
K (ps) is

an i-monochromatic tree, which is an element of V. By Lemma 62, there is p ∈ Pα
compatible with T and Ṙ a name for a branch through T such that p forces Ṙ
to be contained in the generic filter. It follows that p ⊩ “ẋ ∈ [K], ” which is what
we wanted. ∎

After all our hard work, we can finally prove the main result of the paper:

Theorem 84 The inequality hm < u is consistent with the axioms of ZFC.

Proof We start with a model V of the Generalized Continuum Hypothesis. We
perform a countable support iteration ⟨Pα , Q̇α ∣ α ≤ ω2⟩ such that if α < ω2 thenPα ⊩
“Q̇α = S(U̇α)” where U̇α is a Pα-name for an ultrafilter. Furthermore, with a carefully
chosen book-keeping devise we can make sure that Pω2 ⊩ “u = ω2 .” By the results in
the last sections, we know that Pω2 preserves cmin-covering, so Pω2 ⊩ “hm = ω1 .” ∎

7 MAD families in the Shelah model

By the Shelah model, we mean an iteration as in the last theorem. We already know
that hm = ω1 holds in such model, so all the cardinal invariants in the Cichoń diagram
are small. Furthermore, in that model u =ω2 and i = ω1 (see [13]). The only one of the
usual cardinal invariants that is missing to compute a. In this last section, we will
prove that there is a MAD family of size ω1 in the Shelah model. As mentioned in the
introduction, in recent work with Cruz-Chapital et al., we obtained a different proof
of this result (see [12]).

Let f , g ∈ ωω , define f ≤∗ g if and only if f (n) ≤ g(n) for all n ∈ ω except finitely
many. A family D ⊆ ωω is a dominating familyif for every f ∈ ωω , there is g ∈D such
that f ≤∗ g . The dominating number d is defined as the least size of a dominating
family. In [10], Hrušák introduced a diamond principle for the dominating number:
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◇dThere is a sequence ⟨dα ∣ α < ω1⟩ where dα ∶ α �→ ω such that for every f ∶
ω1 �→ ω the set {α > ω ∣ f ↾ α ≤∗ dα} is nonempty. The sequence is called a ◇d-
sequence.
Above, f ↾ α ≤∗ dα means that the set {ξ < α ∣ dα (ξ) < f (ξ)} is finite. It is easy

to see that ◇δ implies that d = ω1 . It is an old problem of Roitman if d = ω1 implies
a = ω1 , however, Hrušák proved the following:

Proposition 85 [10] ◇d implies a = ω1 .

In order to show that a = ω1 holds in the Shelah model, we will prove that ◇d is
true in there. Recall that ◇ is the following statement:
◇There is D = {Dα ∣ α ∈ ω1} with Dα ⊆ α such that for every X ⊆ ω1 , the set
{α ∣ X ∩ α = Dα} is stationary.
We will use ◇ in order to construct a ◇d-sequence for the Shelah model. By

LIM (ω1), we denote the set of all countable limit ordinals. We start with the following:

Lemma 86 Let V ⊧ ◇ and κ a large enough regular cardinal. There is a sequence
⟨(Mα , pα , ḟα)⟩α∈LIM(ω1) such that for every α < ω1 the following holds:

1. Mα is a countable elementary submodel of H(κ) such that Pω2 , pα , ḟα ∈ Mα (where
Pω2 is the iteration of the Shelah forcing).

2. pα ∈ Pω2 and pα ⊩ “ ḟα ∶ ω1 �→ ω.”
With the property that for every p ∈ Pω2 and ḟ such that p ⊩ “ ḟ ∶ ω1 �→ ω,′′ there

are countable N ⪯ H(κ) and α < ω1 such that the following conditions hold:
1. Pω2 , p, ḟ ∈ N .
2. Mα ∩ ω1 = α.
3. The structures (N , ∈,Pω2 , p, ḟ ) and (Mα , ∈,Pω2 , pα , ḟα) are isomorphic.

Proof Using◇, we can find a sequence ⟨Aα = (α, ⊳α , Pα , rα , hα)⟩α∈LIM(ω1)
such that

for every structure A = (ω1 , ⊳, P, r, h) there are stationary many α such that Aα is a
substructure ofA. Given α a limit ordinal, in case there are a countable M ⪯H(κ) , p ∈
Pω2 , ḟ such thatPω2 , p, ḟ ∈ M , M ∩ α = α, p ⊩ “ ḟ ∶ ω1 �→ ω” and (M , ∈,Pω2 , p, ḟ ) is
isomorphic toAα then we choose one of them and define Mα = M , pα = p and ḟα = ḟ .
If there is no M satisfying those properties, we just take any (Mα , pα , ḟα) satisfying
the properties 1 and 2. We will now prove D = {(Mα , pα , ḟα) ∣ α ∈ LIM (ω1)} has the
desired properties.

Let p ∈ Pω2 and ḟ such that p ⊩ “ ḟ ∶ ω1 �→ ω.” Recursively, we build
{Nα ∣ α < ω1} a continuous ∈-chain of countable elementary submodels of H(κ)
such that p, ḟ ,Pω2 ∈ N0 . Let N = ⋃

α∈ω1
Nα , since N has size ω1 then we can define a

structure A = (ω1 , ⊳, P, r, h) that is isomorphic to (N , ∈,Pω2 , p, ḟ ). Let F ∶ ω1 �→ N
be an isomorphism.

It is easy to see that {α ∈ LIM (ω1) ∣ Nα ∩ ω1 = α ∧ F [α] = Nα} is a club. In
this way, we can find α such that F [α] = Nα , Nα ∩ ω1 = α and Aα is a substruc-
ture of A. Note that Nα , p and ḟ satisfy the conditions of the definition at step
α, so (Mα , ∈,Pω2 , pα , ḟα) is isomorphic to Aα hence it is also isomorphic to
(N , ∈,Pω2 , p, ḟ ) (of course it might be the case Mα = Nα but this is highly unlikely).∎
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With the lemma, we can now prove the following:

Proposition 87 ◇d holds in the Shelah model.

Proof It is well known that we may assume that ◇ holds in V . Fix a sequence
⟨(Mα , pα , ḟα)⟩α∈LIM(ω1) as in the previous lemma, we will now define D =
{dα ∶ α �→ ω ∣ α < ω1} . In case Mα ∩ ω1 ≠ α, let dα be any constant function. Fix
α such that Mα ∩ ω1 = α, we will see how to define dα .

Let L = {(Fn , ηn) ∣ n ∈ ω} that is (Mα , ω2)-suitable. Fix an enumeration α =
{αn ∣ n ∈ ω}. For every β < α define Dα

β = {q ∣ ∃n(q ⊩ “ ḟα(β) = n”)} and recall that
the set D̃α

β(F , η) = {q ∣ ∀σ ∈ ∏
δ∈F

2η(δ)∃nσ(q ∗ σ ⊩ “ ḟα(β) = n′′σ )} is (F , η)∗-open

dense and it is an element of Mα . We can build a fusion tree T = {ps ∣ s ∈ 2<ω} with
the following properties:
1. p∅ = pα .
2. If s ∈ 2n+1 then ps ∈ D̃α

βn
(Fn , ηn).

Define dα ∶ α �→ ω such that if n ∈ ω then ps ⊩ “ ḟα(αn) < dα(αn)” for every
s ∈ 2n+1 . We will prove that D = {dα ∶ α �→ ω ∣ α < ω1} will be a ◇d-sequence after
forcing with Pω2 . Let p ∈ Pω2 and ḟ such that p ⊩ “ ḟ ∶ ω1 �→ ω.” Applying the
previous lemma, we can find a countable N for which Pω2 , p, ḟ ∈ N and α < ω1 such
that Mα ∩ ω1 = α and the structures (N , ∈,Pω2 , p, ḟ ) and (Mα , ∈,Pω2 , pα , ḟα) are
isomorphic. Let H ∶ Mα �→ N be the isomorphism. Let F′n = H(Fn) and η′n = H(ηn).
Let L′ = {(F′n , η′n) ∣ n ∈ ω}. For every s ∈ 2<ω define p′s = H(ps). In this way, p′∅ = p
and it is easy to see that T ′ = {p′s ∣ s ∈ 2<ω} is a fusion tree.

Let q be compatible with T ′ (which is obviously an extension of p). We will now
prove that q ⊩ “ ḟ ↾ α ≤ dα .” Let n ∈ ω and s ∈ 2n+1 , since ps ⊩ “ ḟα(αn) < dα(αn)” it
follows that p′s ⊩ “ ḟ (αn) < dα(αn).” Finally, since q is compatible with T ′ , it follows
that {p′s ∣ s ∈ 2n+1} is predense below q, so q ⊩ “ ḟ (βn) < dα(βn).” ∎

8 Open questions

We do not know the answer to the following:

Problem 88 Can a generic filter for S(U) be reconstructed from the generic real?

Much of the work in this paper would be simplified if S(U) was an Axiom A
forcing, so we could ask the following:

Problem 89 Let U be an ultrafilter. Is it possible to give S(U) an Axiom A structure?

Unfortunately, we conjecture that this is not possible. An iteration theorem would
greatly simplify the work in this paper, as well as in [7, 9]. We could ask the following:

Problem 90 If P preserves cmin-covering and P ⊩“Q̇ preserves cmin-covering, ” is it
true that P ∗ Q̇ preserves cmin-covering?

Problem 91 If δ is a limit ordinal, ⟨Pα , Ṙα ∣ α < δ⟩ is a countable support iteration of
proper forcings such that each Pα preserves cmin-covering, is it true that Pδ preserves
cmin-covering?
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It might be possible to use the results from chapter VI of [14] to prove an iteration
theorem for preserving cmin-covering, but we were unable to do so.

We do not know the answer to the following question:

Problem 92 Are there P-points in the Shelah model of i < u?

We conjecture that the answer is negative. It might be possible that similar ideas
to the ones used in [6] can be used to prove that there are no P-points in the Shelah
model, but we were unable to prove it.
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